
Package: mRpostman (via r-universe)
October 17, 2024

Type Package

Title An IMAP Client for R

Version 1.1.4

Date 2024-09-15

Description An easy-to-use IMAP client that provides tools for message
searching, selective fetching of message attributes, mailbox
management, attachment extraction, and several other IMAP
features, paving the way for e-mail data analysis in R.

License GPL-3

Encoding UTF-8

Imports curl, R6, stringr, stringi, magrittr, assertthat, base64enc,
utils, rvest, xml2

Depends R (>= 3.1.0)

URL https://allanvc.github.io/mRpostman/

BugReports https://github.com/allanvc/mRpostman/issues/

SystemRequirements libcurl: libcurl-devel (rpm) or
libcurl4-openssl-dev (deb)

Suggests knitr, rmarkdown

VignetteBuilder knitr

RoxygenNote 7.3.2

Repository https://allanvc.r-universe.dev

RemoteUrl https://github.com/allanvc/mrpostman

RemoteRef HEAD

RemoteSha b8faa99d9bb340c52206eabc7cfe12c8288c871e

Contents
mRpostman-package . 2
AND . 3

1

https://allanvc.github.io/mRpostman/
https://github.com/allanvc/mRpostman/issues/

2 mRpostman-package

before . 4
clean_msg_text . 5
configure_imap . 6
decode_mime_header . 7
flag . 8
ImapCon . 9
larger_than . 54
list_attachments . 55
metadata_options . 56
older_than . 56
on . 57
OR . 58
sent_before . 59
sent_on . 60
sent_since . 61
since . 62
smaller_than . 63
string . 63
younger_than . 64

Index 66

mRpostman-package An IMAP client for R

Description

mRpostman is an easy-to-use IMAP client that provides tools for message searching, selective
fetching of message attributes, mailbox management, attachment extraction, and several other
IMAP features, paving the way for e-mail data analysis in R.

Author(s)

Author & Mantainer: Allan Quadros <allanvcq@gmail.com>

References

Crispin, M. (2003), INTERNET MESSAGE ACCESS PROTOCOL - VERSION 4rev1, RFC 3501,
March 2003, https://www.rfc-editor.org/rfc/rfc3501.

Heinlein, P. and Hartleben, P. (2008). The Book of IMAP: Building a Mail Server with Courier and
Cyrus. No Starch Press. ISBN 978-1-59327-177-0.

Ooms, J. (2020). curl: A Modern and Flexible Web Client for R. R package version 4.3, https:
//CRAN.R-project.org/package=curl.

Stenberg, D. Libcurl - The Multiprotocol File Transfer Library, https://curl.se/libcurl/.

https://www.rfc-editor.org/rfc/rfc3501
https://CRAN.R-project.org/package=curl
https://CRAN.R-project.org/package=curl
https://curl.se/libcurl/

AND 3

See Also

Useful links:

• mRpostman official website: https://allanvc.github.io/mRpostman/

AND Relational-operator-function to construct a custom search statement

Description

Relational-operator-function to construct a custom search statement

Usage

AND(..., negate = FALSE)

Arguments

... a combination of criteria constructor functions with its arguments.

negate If TRUE, negates the search and seeks for "NOT search_criterion". Default is
FALSE.

Value

A search string to be used as a request parameter in ImapCon$search() function.

See Also

Other custom search: ImapCon, OR(), before(), flag(), larger_than(), older_than(), on(),
sent_before(), sent_on(), sent_since(), since(), smaller_than(), string(), younger_than()

Examples

Not run:
select folder & search
con$select_folder(name = "INBOX")
search for messages SINCE "30-Ago-2019" AND SMALLER than 512KB.
res <- con$search(request = AND(sent_since(date_char = "30-Ago-2019"),

smaller_than(size = 512000)))

End(Not run)

https://allanvc.github.io/mRpostman/

4 before

before Criterion constructor function to be combined in a custom search
statement

Description

Criterion constructor function to be combined in a custom search statement

Usage

before(date_char, negate = FALSE)

Arguments

date_char A character string with format "DD-Mon-YYYY", e.g. "01-Apr-2019". We
opt not to use Date or POSIX* like objects, since IMAP servers use this unusual
date format.

negate If TRUE, negates the search and seeks for "NOT SEARCH CRITERIA". Default
is FALSE.

Value

A search string to be used as a request parameter in ImapCon$search() function.

See Also

Other custom search: AND(), ImapCon, OR(), flag(), larger_than(), older_than(), on(),
sent_before(), sent_on(), sent_since(), since(), smaller_than(), string(), younger_than()

Examples

Not run:
select folder & search
con$select_folder(name = "INBOX")
search for messages BEFORE "17-Apr-2019" AND NOT SMALLER than 512KB.
res <- con$search(request = AND(before(date_char = "17-Apr-2019"),

smaller_than(size = 512000, negate = TRUE)))

End(Not run)

clean_msg_text 5

clean_msg_text Extract text from MIME level

Description

Extract text from MIME level

Usage

clean_msg_text(msg_list)

Arguments

msg_list A list with the MIME level 1 of the body or text content of the messages
fetched with ImapCon$fetch_body() or ImapCon$fetch_text().

Value

A list containing the decoded messages if applicable.

References

Moore, K. (1996), MIME (Multipurpose Internet Mail Extensions) Part Three: Message Header
Extensions for Non-ASCII Text, RFC 2047, November 1996, https://tools.ietf.org/html/rfc2047.

Freed, N., Borenstein, N. (1996), Multipurpose Internet Mail Extensions (MIME) Part One: Format
of Internet Message Bodies, RFC 2045, November 1996, https://tools.ietf.org/html/rfc2045.

Internal parts of this object, regarding the quoted printable type, were borrowed from https://github.com/hrbrmstr/hrbrmisc/blob/master/R/qp.r
with slight modifications.

Examples

Not run:
ids <- con$search_since(date_char = "01-Apr-2020", use_uid = TRUE)

fetch_res <- ids %>%
con$fetch_body(use_uid = TRUE, mime_level = 1L)

clean_text_list <- clean_msg_text(msg_list = fetch_res)

End(Not run)

6 configure_imap

configure_imap IMAP Connection Configuration

Description

Configure and create a new IMAP connection.

Usage

configure_imap(
url,
username,
password = NULL,
xoauth2_bearer = NULL,
use_ssl = TRUE,
verbose = FALSE,
buffersize = 16000,
timeout_ms = 0,
...

)

Arguments

url A character string containing the IMAP server address

username A character string containing the username.

password A character string containing the user’s password.

xoauth2_bearer A character string containing the oauth2 bearer token.

use_ssl A logical indicating the use or not of Secure Sockets Layer encryption when
connecting to the IMAP server. Default is TRUE.

verbose If FALSE, mutes the flow of information between the server and the client. De-
fault is FALSE.

buffersize The size in bytes for the receive buffer. Default is 16000 bytes or 16kb, which
means it will use the libcurl’s default value. According to the libcurl’s docu-
mentation, the maximum buffersize is 512kb (or 512000 bytes), but any number
passed to buffersize is treated as a request, not an order.

timeout_ms Time in milliseconds (ms) to wait for the execution or re-execution of a com-
mand. Default is 0, which means that no timeout limit is set.

... Further curl parameters (see curl::curl_options) that can be used with the
IMAP protocol. Only for advanced users.

Value

A new ‘ImapCon‘ object.

decode_mime_header 7

Examples

Not run:
w/ Plain authentication
con <- configure_imap(

url="imaps://outlook.office365.com",
username="user@agency.gov.br",
password=rstudioapi::askForPassword(),
verbose = TRUE)

w/ OAuth2.0 authentication
con <- configure_imap(

url="imaps://outlook.office365.com",
username="user@agency.gov.br",
verbose = TRUE,
xoauth2_bearer = "XX.Ya9...")

End(Not run)

decode_mime_header Decode RFC 2047 quoted-printable and base64 MIME headers and
strings

Description

Decode RFC 2047 quoted-printable and base64 MIME headers and strings

Usage

decode_mime_header(string)

Arguments

string A character vector containing a string to be decoded.

Value

A decoded character vector if applicable.

Note

The RFC 2047 (Moore, 1996) presents an encoded-word syntax to be used by e-mail clients to dis-
play body text and header information in character sets other than ASCII. According to the manual,
non-ASCII content is encoded as an ASCII text string as follows: =?<charset>?<encoding>?<encoded-text>?=.
The encoding can be of two types: "B" for "BASE64", or "Q" for quoted- printable content (Freed
and Borentein, 1996). Besides the standard RFC 2047 decoding, this function also enables users
to decode content that does not strictly follow the =?<charset>?<encoding>?<encoded-text>?=
RFC 2047 syntax, i.e. cases where only the encoded text part is present, such as the quoted-printable
pattern in the string "Estat=EDstica" (Estatística, which is the equivalent word, in Portuguese, for
Statistics).

8 flag

References

Moore, K. (1996), MIME (Multipurpose Internet Mail Extensions) Part Three: Message Header
Extensions for Non-ASCII Text, RFC 2047, November 1996, https://tools.ietf.org/html/rfc2047.

Freed, N., Borenstein, N. (1996), Multipurpose Internet Mail Extensions (MIME) Part One: Format
of Internet Message Bodies, RFC 2045, November 1996, https://tools.ietf.org/html/rfc2045.

Internal parts of this object, regarding the quoted printable type, were borrowed from https://github.com/hrbrmstr/hrbrmisc/blob/master/R/qp.r
with slight modifications.

Examples

Not run:
The examples below runs smoothly on any computer. The 'dontrun' flag is just to skip CRAN checks.

Simple quoted-printable string - Portuguese example
qp_encoded <- "Minist=E9rio_da_Educa=E7=E3o"
decode_mime_header(string = qp_encoded)

Simple quoted-printable string - French example
qp_encoded <- "sur la route =C3=A0 suivre les voil=C3=A0 bient=C3=B4t qui te d=C3=A9gradent"
decode_mime_header(string = qp_encoded)

Simple quoted-printable string - Norwegian example
qp_encoded <- "p=C3=A5 veien for =C3=A5 f=C3=B8lge, snart vil de forringe deg"
decode_mime_header(string = qp_encoded)

Simple quoted-printable string - Turkish example
qp_encoded <- "yak=C4=B1nda seni k=C3=BC=C3=A7=C3=BCk d=C3=BC=C5=9F=C3=BCrecekler"
decode_mime_header(string = qp_encoded)

RFC 2047 quoted-printable header - Portuguese example
qp_encoded <- "=?iso-8859-1?Q?DIDEC_Capacita=E7=E3o?="
decode_mime_header(string = qp_encoded)

RFC 2047 quoted-printable - German example
qp_encoded <- "=?UTF-8?Q?stern=2Ede_-_t=C3=A4glich?="
decode_mime_header(string = qp_encoded)

RFC 2047 base64 - Portuguese example
b64_encoded <- "=?utf-8?B?Sk9BTkEgRlVTQ08gTE9CTyBubyBUZWFtcw==?="
decode_mime_header(string = b64_encoded)

End(Not run)

flag Criterion constructor function to be combined in a custom search
statement

ImapCon 9

Description

Criterion constructor function to be combined in a custom search statement

Usage

flag(name, negate = FALSE)

Arguments

name A string containing one or more flags to search for. Use ImapCon$list_flags()
to list the flags in a selected mail folder.

negate If TRUE, negates the search and seeks for "NOT SEARCH CRITERIA". Default
is FALSE.

See Also

Other custom search: AND(), ImapCon, OR(), before(), larger_than(), older_than(), on(),
sent_before(), sent_on(), sent_since(), since(), smaller_than(), string(), younger_than()

Examples

Not run:
select folder & search
con$select_folder(name = "INBOX")
search for messages with Flag "UNSEEN" AND NOT Smaller Than 512KB.
res <- con$search(request = AND(flag("UNSEEN"),

smaller_than(size = 512000, negate = TRUE)))

End(Not run)

ImapCon An IMAP Connection Class

Description

Configure an IMAP connection using the ImapCon R6 class.

Methods

Public methods:
• ImapCon$new()

• ImapCon$reset_url()

• ImapCon$reset_username()

• ImapCon$reset_use_ssl()

• ImapCon$reset_verbose()

• ImapCon$reset_buffersize()

10 ImapCon

• ImapCon$reset_timeout_ms()

• ImapCon$reset_password()

• ImapCon$reset_xoauth2_bearer()

• ImapCon$list_server_capabilities()

• ImapCon$list_mail_folders()

• ImapCon$select_folder()

• ImapCon$examine_folder()

• ImapCon$create_folder()

• ImapCon$rename_folder()

• ImapCon$list_flags()

• ImapCon$search()

• ImapCon$search_larger_than()

• ImapCon$search_smaller_than()

• ImapCon$search_before()

• ImapCon$search_since()

• ImapCon$search_on()

• ImapCon$search_period()

• ImapCon$search_sent_before()

• ImapCon$search_sent_since()

• ImapCon$search_sent_on()

• ImapCon$search_sent_period()

• ImapCon$search_flag()

• ImapCon$search_older_than()

• ImapCon$search_younger_than()

• ImapCon$search_string()

• ImapCon$fetch_body()

• ImapCon$fetch_header()

• ImapCon$fetch_metadata()

• ImapCon$fetch_text()

• ImapCon$copy_msg()

• ImapCon$move_msg()

• ImapCon$esearch_count()

• ImapCon$delete_msg()

• ImapCon$expunge()

• ImapCon$esearch_min_id()

• ImapCon$esearch_max_id()

• ImapCon$add_flags()

• ImapCon$replace_flags()

• ImapCon$remove_flags()

• ImapCon$get_attachments()

• ImapCon$fetch_attachments_list()

• ImapCon$fetch_attachments()

ImapCon 11

• ImapCon$clone()

Method new(): Configure and create a new IMAP connection.

Usage:
ImapCon$new(
url,
username,
password = NULL,
xoauth2_bearer = NULL,
use_ssl = TRUE,
verbose = FALSE,
buffersize = 16000,
timeout_ms = 0,
...

)

Arguments:

url A character string containing the IMAP server address
username A character string containing the username.
password A character string containing the user’s password.
xoauth2_bearer A character string containing the oauth2 bearer token.
use_ssl A logical indicating the use or not of Secure Sockets Layer encryption when connect-

ing to the IMAP server. Default is TRUE.
verbose If FALSE, mutes the flow of information between the server and the client. Default is

FALSE.
buffersize The size in bytes for the receive buffer. Default is 16000 bytes or 16kb, which

means it will use the libcurl’s default value. According to the libcurl’s documentation, the
maximum buffersize is 512kb (or 512000 bytes), but any number passed to buffersize is
treated as a request, not an order.

timeout_ms Time in milliseconds (ms) to wait for the execution or re-execution of a command.
Default is 0, which means that no timeout limit is set.

... Further curl parameters (see curl::curl_options) that can be used with the IMAP pro-
tocol. Only for advanced users.

Returns: A new ‘ImapCon‘ object.

Method reset_url(): Reset the previously informed url

Usage:
ImapCon$reset_url(x)

Arguments:

x A character string containing a new url to be set.

Method reset_username(): Reset the previously informed username

Usage:
ImapCon$reset_username(x)

Arguments:

12 ImapCon

x A character string containing a new username to be set.

Method reset_use_ssl(): Reset the previously informed use_ssl parameter

Usage:
ImapCon$reset_use_ssl(x)

Arguments:

x A logical indicating the use or not of Secure Sockets Layer encryption when connecting to
the IMAP server. Default is TRUE.

Method reset_verbose(): Reset the previously informed verbose parameter

Usage:
ImapCon$reset_verbose(x)

Arguments:

x If FALSE, mutes the flow of information between the server and the client.

Method reset_buffersize(): Reset the previously informed buffersize parameter

Usage:
ImapCon$reset_buffersize(x)

Arguments:

x The size in bytes for the receive buffer. Default is 16000 bytes or 16kb, which means it will
use the libcurl’s default value. According to the libcurl’s documentation, the maximum
buffersize is 512kb (or 512000 bytes), but any number passed to buffersize is treated as a
request, not an order.

Method reset_timeout_ms(): Reset the previously informed buffersize parameter

Usage:
ImapCon$reset_timeout_ms(x)

Arguments:

x Time in milliseconds (ms) to wait for the execution or re-execution of a command. Default is
0, which means that no timeout limit is set.

Method reset_password(): Reset the previously informed password

Usage:
ImapCon$reset_password(x)

Arguments:

x A character string containing the user’s password.

Method reset_xoauth2_bearer(): Reset the previously informed oauth2 bearer token

Usage:
ImapCon$reset_xoauth2_bearer(x)

Arguments:

x A character string containing the oauth2 bearer token.

ImapCon 13

Method list_server_capabilities(): List the server’s IMAP capabilities.

Usage:
ImapCon$list_server_capabilities(retries = 1)

Arguments:
retries Number of attempts to connect and execute the command. Default is 1.

Returns: A character vector containing the server’s IMAP capabilities.

Examples:
\dontrun{
cap <- con$list_server_capabilities()
cap
}

Method list_mail_folders(): List mail folders in a mailbox.

Usage:
ImapCon$list_mail_folders(retries = 1)

Arguments:
retries Number of attempts to connect and execute the command. Default is 1.

Returns: A list containing the mail folder names and their inherent structure.

Examples:
\dontrun{
folders <- con$list_mail_folders()
folders
}

Method select_folder(): Select a mail folder.

Usage:
ImapCon$select_folder(name, mute = FALSE, retries = 1)

Arguments:
name A string containing the name of an existing mail folder on the user’s mailbox.
mute A logical. If TRUE, mutes the confirmation message when the command is successfully

executed. Default is FALSE.
retries Number of attempts to connect and execute the command. Default is 1.

Returns: A list containing the mail folder names and their inherent structure.

Examples:
\dontrun{
con$select_mail_folder(name = "INBOX")
}

Method examine_folder(): Examine the number of messages in a mail folder.

Usage:
ImapCon$examine_folder(name = NULL, retries = 1)

Arguments:

14 ImapCon

name A character string containing the name of an existing mail folder on the user’s mailbox.
If no name is passed, the command will be executed using the previously selected mail
folder name.

retries Number of attempts to connect and execute the command. Default is 1.

Returns: A vector (with names "EXISTS" and "RECENT") containing the number of messages
in each category.

Examples:
\dontrun{
con$select_folder(name = "INBOX")
con$examine_folder()

or directly:
con$examine_folder("Sent")
}

Method create_folder(): Create a new mail folder.

Usage:
ImapCon$create_folder(name, mute = FALSE, retries = 1)

Arguments:
name A string containing the name of the new mail folder to be created.
mute A logical. If TRUE, mutes the confirmation message when the command is successfully

executed. Default is FALSE.
retries Number of attempts to connect and execute the command. Default is 1.

Returns: TRUE in case the operation is successful.

Examples:
\dontrun{
con$create_folder(name = "New Folder Name")
}

Method rename_folder(): Rename a mail folder.

Usage:
ImapCon$rename_folder(
name = NULL,
new_name,
reselect = TRUE,
mute = FALSE,
retries = 1

)

Arguments:
name A string containing the name of the new mail folder to be renamed. If no name is passed,

the command will be executed using the previously selected mail folder name.
new_name A string containing the new name to be assigned.
reselect A logical. If TRUE, calls select_folder(name = to_folder) under the hood before

returning the output. Default is TRUE.

ImapCon 15

mute A logical. If TRUE, mutes the confirmation message when the command is successfully
executed. Default is FALSE.

retries Number of attempts to connect and execute the command. Default is 1.

Returns: TRUE in case the operation is successful.

Examples:
\dontrun{
con$select_folder(name = "Folder A")
con$rename_folder(new_name = "Folder B")
or directly:
con$rename_folder(name = "Folder A", new_name = "Folder B")
}

Method list_flags(): List flags in a selected mail folder
Usage:
ImapCon$list_flags(retries = 1)

Arguments:
retries Number of attempts to connect and execute the command. Default is 1.

Returns: TRUE in case the operation is successful.

Examples:
\dontrun{
con$select_folder(name = "INBOX")
con$list_flags()
}

Method search(): Execute a custom search
Usage:
ImapCon$search(
request,
negate = FALSE,
use_uid = FALSE,
esearch = FALSE,
retries = 1

)

Arguments:
request A string directly specifying what to search or constructed by a combination of relational-

operator-helper-functions OR and AND, and criteria helper functions such as before, since,
on, sent_before, sent_since, sent_on, flag, string, smaller_than, larger_than,
younger_than, or younger_than.

negate If TRUE, negates the search and seeks for "NOT SEARCH CRITERIA". Default is
FALSE.

use_uid Default is FALSE. In this case, results will be presented as message sequence numbers.
A message sequence number is a message’s relative position to the oldest message in a mail
folder. It may change after deleting or moving messages. If a message is deleted, sequence
numbers are reordered to fill the gap. If TRUE, the command will be performed using the
"UID" or unique identifier, and results are presented as such. UIDs are always the same
during the life cycle of a message in a mail folder.

16 ImapCon

esearch A logical. Default is FALSE. If the IMAP server has ESEARCH capability, it can be used
to optimize search results. It will condense the results: instead of writing down the whole
sequences of messages’ ids, such as {1 2 3 4 5}, it will be presented as {1:5}, which de-
creases transmission costs. This argument can be used along with buffersize to avoid re-
sults stripping. Check if your IMAP server supports ESEARCH with ImapCon$list_server_capabilities().

retries Number of attempts to connect and execute the command. Default is 1.

Returns: A list containing the flags (character vector), the permanent flags (character
vector), and an indication if custom flags are allowed by the server (logical vector).

Examples:

\dontrun{
con$select_folder(name = "INBOX")
ex1
con$search(OR(before(date_char = "17-Apr-2015"),

string(expr = "John", where = "FROM")))

ex2
con$search(AND(smaller_than(size = "512000"),

string(expr = "John", where = "FROM"),
string(expr = "@ksu.edu", where = "CC")))

}

Method search_larger_than(): Search by size (LARGER)

Usage:
ImapCon$search_larger_than(
size,
negate = FALSE,
use_uid = FALSE,
flag = NULL,
esearch = FALSE,
retries = 1

)

Arguments:

size An integer specifying the size in bytes to be used as the search criterion.
negate If TRUE, negates the search and seeks for "NOT SEARCH CRITERION". Default is

FALSE.
use_uid Default is FALSE. In this case, results will be presented as message sequence numbers.

A message sequence number is a message’s relative position to the oldest message in a mail
folder. It may change after deleting or moving messages. If a message is deleted, sequence
numbers are reordered to fill the gap. If TRUE, the command will be performed using the
"UID" or unique identifier, and results are presented as such. UIDs are always the same
during the life cycle of a message in a mail folder.

flag An optional argument that sets one or more flags as an additional filter to the search. Use
ImapCon$list_flags() to list the flags in a selected mail folder. Default is NULL.

esearch A logical. Default is FALSE. If the IMAP server has ESEARCH capability, it can be used
to optimize search results. It will condense the results: instead of writing down the whole

ImapCon 17

sequences of messages’ ids, such as {1 2 3 4 5}, it will be presented as {1:5}, which de-
creases transmission costs. This argument can be used along with buffersize to avoid re-
sults stripping. Check if your IMAP server supports ESEARCH with ImapCon$list_server_capabilities().

retries Number of attempts to connect and execute the command. Default is 1.

Returns: A numeric vector containing the message ids.

Examples:
\dontrun{
search for messages with size larger than 512Kb
con$search_larger_than(size = 512000))
}

Method search_smaller_than(): Search by size (SMALLER)
Usage:
ImapCon$search_smaller_than(
size,
negate = FALSE,
use_uid = FALSE,
flag = NULL,
esearch = FALSE,
retries = 1

)

Arguments:
size An integer specifying the size in bytes to be used as the search criterion.
negate If TRUE, negates the search and seeks for "NOT SEARCH CRITERION". Default is

FALSE.
use_uid Default is FALSE. In this case, results will be presented as message sequence numbers.

A message sequence number is a message’s relative position to the oldest message in a mail
folder. It may change after deleting or moving messages. If a message is deleted, sequence
numbers are reordered to fill the gap. If TRUE, the command will be performed using the
"UID" or unique identifier, and results are presented as such. UIDs are always the same
during the life cycle of a message in a mail folder.

flag An optional argument that sets one or more flags as an additional filter to the search. Use
ImapCon$list_flags() to list the flags in a selected mail folder. Default is NULL.

esearch A logical. Default is FALSE. If the IMAP server has ESEARCH capability, it can be used
to optimize search results. It will condense the results: instead of writing down the whole
sequences of messages’ ids, such as {1 2 3 4 5}, it will be presented as {1:5}, which de-
creases transmission costs. This argument can be used along with buffersize to avoid re-
sults stripping. Check if your IMAP server supports ESEARCH with ImapCon$list_server_capabilities().

retries Number of attempts to connect and execute the command. Default is 1.

Returns: A numeric vector containing the message ids.

Examples:
\dontrun{
con$select_folder(name = "INBOX")
search for messages with size smaller than 512Kb
con$search_smaller_than(size = 512000))
}

18 ImapCon

Method search_before(): Search by internal date (BEFORE)

Usage:
ImapCon$search_before(
date_char,
negate = FALSE,
use_uid = FALSE,
flag = NULL,
esearch = FALSE,
retries = 1

)

Arguments:

date_char A character string with format "DD-Mon-YYYY", e.g. "01-Apr-2019". We opt
not to use Date or POSIX* like objects, since IMAP servers use this uncommon date format.

negate If TRUE, negates the search and seeks for "NOT SEARCH CRITERION". Default is
FALSE.

use_uid Default is FALSE. In this case, results will be presented as message sequence numbers.
A message sequence number is a message’s relative position to the oldest message in a mail
folder. It may change after deleting or moving messages. If a message is deleted, sequence
numbers are reordered to fill the gap. If TRUE, the command will be performed using the
"UID" or unique identifier, and results are presented as such. UIDs are always the same
during the life cycle of a message in a mail folder.

flag An optional argument that sets one or more flags as an additional filter to the search. Use
ImapCon$list_flags() to list the flags in a selected mail folder. Default is NULL.

esearch A logical. Default is FALSE. If the IMAP server has ESEARCH capability, it can be used
to optimize search results. It will condense the results: instead of writing down the whole
sequences of messages’ ids, such as {1 2 3 4 5}, it will be presented as {1:5}, which de-
creases transmission costs. This argument can be used along with buffersize to avoid re-
sults stripping. Check if your IMAP server supports ESEARCH with ImapCon$list_server_capabilities().

retries Number of attempts to connect and execute the command. Default is 1.

Returns: A numeric vector containing the message ids.

Examples:

\dontrun{
con$select_folder(name = "INBOX")
search for messages with date before "02-Jan-2020", presenting the
.. results as unique identifiers (UID)
con$search_before(date = "02-Jan-2020", use_uid = TRUE)
}

Method search_since(): Search by internal date (SINCE)

Usage:
ImapCon$search_since(
date_char,
negate = FALSE,
use_uid = FALSE,
flag = NULL,

ImapCon 19

esearch = FALSE,
retries = 1

)

Arguments:
date_char A character string with format "DD-Mon-YYYY", e.g. "01-Apr-2019". We opt

not to use Date or POSIX* like objects, since IMAP servers use this uncommon date format.
POSIX* like objects, since IMAP servers use this uncommon date format. POSIX* like, since
IMAP servers like this not so common date format.

negate If TRUE, negates the search and seeks for "NOT SEARCH CRITERION". Default is
FALSE.

use_uid Default is FALSE. In this case, results will be presented as message sequence numbers.
A message sequence number is a message’s relative position to the oldest message in a mail
folder. It may change after deleting or moving messages. If a message is deleted, sequence
numbers are reordered to fill the gap. If TRUE, the command will be performed using the
"UID" or unique identifier, and results are presented as such. UIDs are always the same
during the life cycle of a message in a mail folder.

flag An optional argument that sets one or more flags as an additional filter to the search. Use
ImapCon$list_flags() to list the flags in a selected mail folder. Default is NULL.

esearch A logical. Default is FALSE. If the IMAP server has ESEARCH capability, it can be used
to optimize search results. It will condense the results: instead of writing down the whole
sequences of messages’ ids, such as {1 2 3 4 5}, it will be presented as {1:5}, which de-
creases transmission costs. This argument can be used along with buffersize to avoid re-
sults stripping. Check if your IMAP server supports ESEARCH with ImapCon$list_server_capabilities().

retries Number of attempts to connect and execute the command. Default is 1.

Returns: A numeric vector containing the message ids.

Examples:
\dontrun{
con$select_folder(name = "INBOX")
search for messages with date since "02-Jan-2020", presenting the
.. results as unique identifiers (UID)
con$search_since(date = "02-Jan-2020", use_uid = TRUE)
}

Method search_on(): Search by internal date (ON)

Usage:
ImapCon$search_on(
date_char,
negate = FALSE,
use_uid = FALSE,
flag = NULL,
esearch = FALSE,
retries = 1

)

Arguments:
date_char A character string with format "DD-Mon-YYYY", e.g. "01-Apr-2019". We opt

not to use Date or POSIX* like objects, since IMAP servers use this uncommon date format.

20 ImapCon

negate If TRUE, negates the search and seeks for "NOT SEARCH CRITERION". Default is
FALSE.

use_uid Default is FALSE. In this case, results will be presented as message sequence numbers.
A message sequence number is a message’s relative position to the oldest message in a mail
folder. It may change after deleting or moving messages. If a message is deleted, sequence
numbers are reordered to fill the gap. If TRUE, the command will be performed using the
"UID" or unique identifier, and results are presented as such. UIDs are always the same
during the life cycle of a message in a mail folder.

flag An optional argument that sets one or more flags as an additional filter to the search. Use
ImapCon$list_flags() to list the flags in a selected mail folder. Default is NULL.

esearch A logical. Default is FALSE. If the IMAP server has ESEARCH capability, it can be used
to optimize search results. It will condense the results: instead of writing down the whole
sequences of messages’ ids, such as {1 2 3 4 5}, it will be presented as {1:5}, which de-
creases transmission costs. This argument can be used along with buffersize to avoid re-
sults stripping. Check if your IMAP server supports ESEARCH with ImapCon$list_server_capabilities().

retries Number of attempts to connect and execute the command. Default is 1.

Returns: A numeric vector containing the message ids.

Examples:

\dontrun{
con$select_folder(name = "INBOX")
search for messages received on date "02-Jan-2020", presenting the
#... results as unique identifiers (UID)
con$search_on(date = "02-Jan-2020", use_uid = TRUE)
}

Method search_period(): Search by internal date (Period)

Usage:
ImapCon$search_period(
since_date_char,
before_date_char,
negate = FALSE,
use_uid = FALSE,
flag = NULL,
esearch = FALSE,
retries = 1

)

Arguments:

since_date_char A character string with format "DD-Mon-YYYY", e.g. "01-Apr-2019".
We opt not to use Date or POSIX* like objects, since IMAP servers use this uncommon date
format.

before_date_char A character string with format "DD-Mon-YYYY", e.g. "01-Apr-2019".
We opt not to use Date or POSIX* like objects, since IMAP servers use this uncommon date
format.

negate If TRUE, negates the search and seeks for "NOT SEARCH CRITERION". Default is
FALSE.

ImapCon 21

use_uid Default is FALSE. In this case, results will be presented as message sequence numbers.
A message sequence number is a message’s relative position to the oldest message in a mail
folder. It may change after deleting or moving messages. If a message is deleted, sequence
numbers are reordered to fill the gap. If TRUE, the command will be performed using the
"UID" or unique identifier, and results are presented as such. UIDs are always the same
during the life cycle of a message in a mail folder.

flag An optional argument that sets one or more flags as an additional filter to the search. Use
ImapCon$list_flags() to list the flags in a selected mail folder. Default is NULL.

esearch A logical. Default is FALSE. If the IMAP server has ESEARCH capability, it can be used
to optimize search results. It will condense the results: instead of writing down the whole
sequences of messages’ ids, such as {1 2 3 4 5}, it will be presented as {1:5}, which de-
creases transmission costs. This argument can be used along with buffersize to avoid re-
sults stripping. Check if your IMAP server supports ESEARCH with ImapCon$list_server_capabilities().

retries Number of attempts to connect and execute the command. Default is 1.

Returns: A numeric vector containing the message ids.

Examples:
\dontrun{
con$select_folder(name = "INBOX")
search for all messages in the mail folder, EXCEPT (negate = TRUE) by
#... those received between the dates "02-Jan-2020" and "22-Mar-2020"
con$search_period(since_date_char = "02-Jan-2020",

before_date_char = "22-Mar-2020",
negate = TRUE))

}

Method search_sent_before(): Search by origination date (RFC 2822 Header - SENT BE-
FORE)

Usage:
ImapCon$search_sent_before(
date_char,
negate = FALSE,
use_uid = FALSE,
flag = NULL,
esearch = FALSE,
retries = 1

)

Arguments:
date_char A character string with format "DD-Mon-YYYY", e.g. "01-Apr-2019". We opt

not to use Date or POSIX* like objects, since IMAP servers use this uncommon date format.
negate If TRUE, negates the search and seeks for "NOT SEARCH CRITERION". Default is

FALSE.
use_uid Default is FALSE. In this case, results will be presented as message sequence numbers.

A message sequence number is a message’s relative position to the oldest message in a mail
folder. It may change after deleting or moving messages. If a message is deleted, sequence
numbers are reordered to fill the gap. If TRUE, the command will be performed using the
"UID" or unique identifier, and results are presented as such. UIDs are always the same
during the life cycle of a message in a mail folder.

22 ImapCon

flag An optional argument that sets one or more flags as an additional filter to the search. Use
ImapCon$list_flags() to list the flags in a selected mail folder. Default is NULL.

esearch A logical. Default is FALSE. If the IMAP server has ESEARCH capability, it can be used
to optimize search results. It will condense the results: instead of writing down the whole
sequences of messages’ ids, such as {1 2 3 4 5}, it will be presented as {1:5}, which de-
creases transmission costs. This argument can be used along with buffersize to avoid re-
sults stripping. Check if your IMAP server supports ESEARCH with ImapCon$list_server_capabilities().

retries Number of attempts to connect and execute the command. Default is 1.

Returns: A numeric vector containing the message ids.

Examples:

\dontrun{
search for messages with date before "02-Jan-2020", presenting the
.. results as unique identifiers (UID)
con$search_sent_before(date = "02-Jan-2020", use_uid = TRUE)
}

Method search_sent_since(): Search by origination date (RFC 2822 Header - SENT SINCE)

Usage:
ImapCon$search_sent_since(
date_char,
negate = FALSE,
use_uid = FALSE,
flag = NULL,
esearch = FALSE,
retries = 1

)

Arguments:

date_char A character string with format "DD-Mon-YYYY", e.g. "01-Apr-2019". We opt
not to use Date or POSIX* like objects, since IMAP servers use this uncommon date format.

negate If TRUE, negates the search and seeks for "NOT SEARCH CRITERION". Default is
FALSE.

use_uid Default is FALSE. In this case, results will be presented as message sequence numbers.
A message sequence number is a message’s relative position to the oldest message in a mail
folder. It may change after deleting or moving messages. If a message is deleted, sequence
numbers are reordered to fill the gap. If TRUE, the command will be performed using the
"UID" or unique identifier, and results are presented as such. UIDs are always the same
during the life cycle of a message in a mail folder.

flag An optional argument that sets one or more flags as an additional filter to the search. Use
ImapCon$list_flags() to list the flags in a selected mail folder. Default is NULL.

esearch A logical. Default is FALSE. If the IMAP server has ESEARCH capability, it can be used
to optimize search results. It will condense the results: instead of writing down the whole
sequences of messages’ ids, such as {1 2 3 4 5}, it will be presented as {1:5}, which de-
creases transmission costs. This argument can be used along with buffersize to avoid re-
sults stripping. Check if your IMAP server supports ESEARCH with ImapCon$list_server_capabilities().

retries Number of attempts to connect and execute the command. Default is 1.

ImapCon 23

Returns: A numeric vector containing the message ids.

Examples:

\dontrun{
search for messages with date before "02-Jan-2020", presenting the
.. results as unique identifiers (UID)
con$search_sent_since(date = "02-Jan-2020", use_uid = TRUE)
}

Method search_sent_on(): Search by origination date (RFC 2822 Header - SENT ON)

Usage:
ImapCon$search_sent_on(
date_char,
negate = FALSE,
use_uid = FALSE,
flag = NULL,
esearch = FALSE,
retries = 1

)

Arguments:

date_char A character string with format "DD-Mon-YYYY", e.g. "01-Apr-2019". We opt
not to use Date or POSIX* like objects, since IMAP servers use this uncommon date format.

negate If TRUE, negates the search and seeks for "NOT SEARCH CRITERION". Default is
FALSE.

use_uid Default is FALSE. In this case, results will be presented as message sequence numbers.
A message sequence number is a message’s relative position to the oldest message in a mail
folder. It may change after deleting or moving messages. If a message is deleted, sequence
numbers are reordered to fill the gap. If TRUE, the command will be performed using the
"UID" or unique identifier, and results are presented as such. UIDs are always the same
during the life cycle of a message in a mail folder.

flag An optional argument that sets one or more flags as an additional filter to the search. Use
ImapCon$list_flags() to list the flags in a selected mail folder. Default is NULL.

esearch A logical. Default is FALSE. If the IMAP server has ESEARCH capability, it can be used
to optimize search results. It will condense the results: instead of writing down the whole
sequences of messages’ ids, such as {1 2 3 4 5}, it will be presented as {1:5}, which de-
creases transmission costs. This argument can be used along with buffersize to avoid re-
sults stripping. Check if your IMAP server supports ESEARCH with ImapCon$list_server_capabilities().

retries Number of attempts to connect and execute the command. Default is 1.

Returns: A numeric vector containing the message ids.

Examples:

\dontrun{
con$select_folder(name = "INBOX")
search for messages received on date "02-Jan-2020", presenting the
#... results as unique identifiers (UID)
con$search_sent_on(date = "02-Jan-2020", use_uid = TRUE)
}

24 ImapCon

Method search_sent_period(): Search by origination date (RFC 2822 Header - SENT Period)

Usage:
ImapCon$search_sent_period(
since_date_char,
before_date_char,
negate = FALSE,
use_uid = FALSE,
flag = NULL,
esearch = FALSE,
retries = 1

)

Arguments:
since_date_char A character string with format "DD-Mon-YYYY", e.g. "01-Apr-2019".

We opt not to use Date or POSIX* like objects, since IMAP servers use this uncommon date
format.

before_date_char A character string with format "DD-Mon-YYYY", e.g. "01-Apr-2019".
We opt not to use Date or POSIX* like objects, since IMAP servers use this uncommon date
format.

negate If TRUE, negates the search and seeks for "NOT SEARCH CRITERION". Default is
FALSE.

use_uid Default is FALSE. In this case, results will be presented as message sequence numbers.
A message sequence number is a message’s relative position to the oldest message in a mail
folder. It may change after deleting or moving messages. If a message is deleted, sequence
numbers are reordered to fill the gap. If TRUE, the command will be performed using the
"UID" or unique identifier, and results are presented as such. UIDs are always the same
during the life cycle of a message in a mail folder.

flag An optional argument that sets one or more flags as an additional filter to the search. Use
ImapCon$list_flags() to list the flags in a selected mail folder. Default is NULL.

esearch A logical. Default is FALSE. If the IMAP server has ESEARCH capability, it can be used
to optimize search results. It will condense the results: instead of writing down the whole
sequences of messages’ ids, such as {1 2 3 4 5}, it will be presented as {1:5}, which de-
creases transmission costs. This argument can be used along with buffersize to avoid re-
sults stripping. Check if your IMAP server supports ESEARCH with ImapCon$list_server_capabilities().

retries Number of attempts to connect and execute the command. Default is 1.

Returns: A numeric vector containing the message ids.

Examples:
\dontrun{
con$select_folder(name = "INBOX")
search for all messages in the mail folder, EXCEPT (negate = TRUE) by
#... those received between the dates "02-Jan-2020" and "22-Mar-2020"
con$search_sent_period(since_date_char = "02-Jan-2020",

before_date_char = "22-Mar-2020",
negate = TRUE))

}

Method search_flag(): Search by flag(s)

ImapCon 25

Usage:
ImapCon$search_flag(
name,
negate = FALSE,
use_uid = FALSE,
esearch = FALSE,
retries = 1

)

Arguments:

name A string containing one or more flags to search for. Use ImapCon$list_flags() to list
the flags in a selected mail folder.

negate If TRUE, negates the search and seeks for "NOT SEARCH CRITERION". Default is
FALSE.

use_uid Default is FALSE. In this case, results will be presented as message sequence numbers.
A message sequence number is a message’s relative position to the oldest message in a mail
folder. It may change after deleting or moving messages. If a message is deleted, sequence
numbers are reordered to fill the gap. If TRUE, the command will be performed using the
"UID" or unique identifier, and results are presented as such. UIDs are always the same
during the life cycle of a message in a mail folder.

esearch A logical. Default is FALSE. If the IMAP server has ESEARCH capability, it can be used
to optimize search results. It will condense the results: instead of writing down the whole
sequences of messages’ ids, such as {1 2 3 4 5}, it will be presented as {1:5}, which de-
creases transmission costs. This argument can be used along with buffersize to avoid re-
sults stripping. Check if your IMAP server supports ESEARCH with ImapCon$list_server_capabilities().

retries Number of attempts to connect and execute the command. Default is 1.

Returns: A numeric vector containing the message ids.

Examples:

\dontrun{
con$select_folder(name = "INBOX")
search for all messages in the mail folder that are marked as "SEEN" AND
#.. "ANSWERED"
con$search_flag(name = c("SEEN", "ANSWERED"))
}

Method search_older_than(): Search WITHIN a specific time (OLDER)

Usage:
ImapCon$search_older_than(
seconds,
negate = FALSE,
use_uid = FALSE,
flag = NULL,
esearch = FALSE,
retries = 1

)

Arguments:

26 ImapCon

seconds An integer specifying the number of seconds to be used as the search criterion.
negate If TRUE, negates the search and seeks for "NOT SEARCH CRITERION". Default is

FALSE.
use_uid Default is FALSE. In this case, results will be presented as message sequence numbers.

A message sequence number is a message’s relative position to the oldest message in a mail
folder. It may change after deleting or moving messages. If a message is deleted, sequence
numbers are reordered to fill the gap. If TRUE, the command will be performed using the
"UID" or unique identifier, and results are presented as such. UIDs are always the same
during the life cycle of a message in a mail folder.

flag An optional argument that sets one or more flags as an additional filter to the search. Use
ImapCon$list_flags() to list the flags in a selected mail folder. Default is NULL.

esearch A logical. Default is FALSE. If the IMAP server has ESEARCH capability, it can be used
to optimize search results. It will condense the results: instead of writing down the whole
sequences of messages’ ids, such as {1 2 3 4 5}, it will be presented as {1:5}, which de-
creases transmission costs. This argument can be used along with buffersize to avoid re-
sults stripping. Check if your IMAP server supports ESEARCH with ImapCon$list_server_capabilities().

retries Number of attempts to connect and execute the command. Default is 1.

Returns: A numeric vector containing the message ids.

Examples:

\dontrun{
con$select_folder(name = "INBOX")
search for all messages received in the last hour (not older than 3600 seconds)
con$search_older_than(seconds = 3600, negate = TRUE)
}

Method search_younger_than(): Search WITHIN a specific time (YOUNGER)

Usage:
ImapCon$search_younger_than(
seconds,
negate = FALSE,
use_uid = FALSE,
flag = NULL,
esearch = FALSE,
retries = 1

)

Arguments:

seconds An integer specifying the number of seconds to be used as the search criterion.
negate If TRUE, negates the search and seeks for "NOT SEARCH CRITERION". Default is

FALSE.
use_uid Default is FALSE. In this case, results will be presented as message sequence numbers.

A message sequence number is a message’s relative position to the oldest message in a mail
folder. It may change after deleting or moving messages. If a message is deleted, sequence
numbers are reordered to fill the gap. If TRUE, the command will be performed using the
"UID" or unique identifier, and results are presented as such. UIDs are always the same
during the life cycle of a message in a mail folder.

ImapCon 27

flag An optional argument that sets one or more flags as an additional filter to the search. Use
ImapCon$list_flags() to list the flags in a selected mail folder. Default is NULL.

esearch A logical. Default is FALSE. If the IMAP server has ESEARCH capability, it can be used
to optimize search results. It will condense the results: instead of writing down the whole
sequences of messages’ ids, such as {1 2 3 4 5}, it will be presented as {1:5}, which de-
creases transmission costs. This argument can be used along with buffersize to avoid re-
sults stripping. Check if your IMAP server supports ESEARCH with ImapCon$list_server_capabilities().

retries Number of attempts to connect and execute the command. Default is 1.

Returns: A numeric vector containing the message ids.

Examples:
\dontrun{
con$select_folder(name = "INBOX")
search for all messages received in the last hour (younger than 3600 seconds)
con$search_younger_than(seconds = 3600)
}

Method search_string(): Search by string or expression

Usage:
ImapCon$search_string(
expr,
where,
negate = FALSE,
use_uid = FALSE,
flag = NULL,
esearch = FALSE,
retries = 1

)

Arguments:
expr A character string specifying the word or expression to search for in messages.
where A mandatory character string specifying in which message’s Section or Header Field to

search for the provided string.
negate If TRUE, negates the search and seeks for "NOT SEARCH CRITERION". Default is

FALSE.
use_uid Default is FALSE. In this case, results will be presented as message sequence numbers.

A message sequence number is a message’s relative position to the oldest message in a mail
folder. It may change after deleting or moving messages. If a message is deleted, sequence
numbers are reordered to fill the gap. If TRUE, the command will be performed using the
"UID" or unique identifier, and results are presented as such. UIDs are always the same
during the life cycle of a message in a mail folder.

flag An optional argument that sets one or more flags as an additional filter to the search. Use
ImapCon$list_flags() to list the flags in a selected mail folder. Default is NULL.

esearch A logical. Default is FALSE. If the IMAP server has ESEARCH capability, it can be used
to optimize search results. It will condense the results: instead of writing down the whole
sequences of messages’ ids, such as {1 2 3 4 5}, it will be presented as {1:5}, which de-
creases transmission costs. This argument can be used along with buffersize to avoid re-
sults stripping. Check if your IMAP server supports ESEARCH with ImapCon$list_server_capabilities().

28 ImapCon

retries Number of attempts to connect and execute the command. Default is 1.

Returns: A numeric vector containing the message ids.

Examples:
\dontrun{
con$select_folder(name = "INBOX")
search for all messages received in the last hour (younger than 3600 seconds)
con$search_string(expr = "@k-state.edu", where = "FROM")
}

Method fetch_body(): Fetch message body (message’s full content)

Usage:
ImapCon$fetch_body(
msg_id,
use_uid = FALSE,
mime_level = NULL,
peek = TRUE,
partial = NULL,
write_to_disk = FALSE,
keep_in_mem = TRUE,
mute = FALSE,
retries = 1

)

Arguments:
msg_id A numeric vector containing one or more message ids.
use_uid Default is FALSE. In this case, the operation will be performed using message sequence

numbers. A message sequence number is a message’s relative position to the oldest message
in a mail folder. It may change after deleting or moving messages. If a message is deleted,
sequence numbers are reordered to fill the gap. If TRUE, the command will be performed
using the "UID" or unique identifier. UIDs are always the same during the life cycle of a
message in a mail folder.

mime_level An integer specifying MIME multipart to fetch from the message’s body. De-
fault is NULL, which retrieves the full body content.

peek If TRUE, it does not mark messages as "read" after fetching. Default is TRUE.
partial NULL or a character string with format "startchar.endchar" indicating the size (in char-

acters) of a message slice to fetch. Default is NULL, which will fetch the full specified
content.

write_to_disk If TRUE, writes the fetched content of each message to a text file in a local
folder inside the working directory, also returning the results with invisible(). Default is
FALSE.

keep_in_mem If TRUE, keeps a copy of each fetch result while the operation is being per-
formed with write_to_disk = TRUE. Default is FALSE, and it can only be set TRUE when
write_to_disk = TRUE.

mute A logical. It provides a confirmation message if the command is successfully exe-
cuted. It is only effective when write_to_disk = TRUE and keep_in_mem = FALSE. Default
is FALSE.

retries Number of attempts to connect and execute the command. Default is 1.

ImapCon 29

Returns: A list with the fetch contents or a logical if write_to_disk = TRUE and keep_in_mem
= FALSE.

Examples:

\dontrun{
con$select_folder(name = "INBOX")
do a search and fetch the results (saving to disk) using the pipe
con$search_string(expr = "@k-state.edu", where = "FROM") %>%
con$fetch_body(write_to_disk = TRUE, keep_in_mem = FALSE)

or using a traditional approach
res <- con$search_string(expr = "@k-state.edu", where = "FROM")

con$fetch_body(msg = res, write_to_disk = TRUE, keep_in_mem = FALSE)

}

Method fetch_header(): Fetch message header

Usage:
ImapCon$fetch_header(
msg_id,
use_uid = FALSE,
fields = NULL,
negate_fields = FALSE,
peek = TRUE,
partial = NULL,
write_to_disk = FALSE,
keep_in_mem = TRUE,
mute = FALSE,
retries = 1

)

Arguments:

msg_id A numeric vector containing one or more message ids.
use_uid Default is FALSE. In this case, the operation will be performed using message sequence

numbers. A message sequence number is a message’s relative position to the oldest message
in a mail folder. It may change after deleting or moving messages. If a message is deleted,
sequence numbers are reordered to fill the gap. If TRUE, the command will be performed
using the "UID" or unique identifier. UIDs are always the same during the life cycle of a
message in a mail folder.

fields An optional character vector specifying which field(s) will be fetched from the mes-
sage’s header. If none is specified, it will fetch the full header.

negate_fields If TRUE, negates the operation and seeks for "NOT in the field". Default is
FALSE.

peek If TRUE, it does not mark messages as "read" after fetching. Default is TRUE.
partial NULL or a character string with format "startchar.endchar" indicating the size (in char-

acters) of a message slice to fetch. Default is NULL, which will fetch the full specified
content.

30 ImapCon

write_to_disk If TRUE, writes the fetched content of each message to a text file in a local
folder inside the working directory, also returning the results with invisible(). Default is
FALSE.

keep_in_mem If TRUE, keeps a copy of each fetch result while the operation is being per-
formed with write_to_disk = TRUE. Default is FALSE, and it can only be set TRUE when
write_to_disk = TRUE.

mute A logical. It provides a confirmation message if the command is successfully exe-
cuted. It is only effective when write_to_disk = TRUE and keep_in_mem = FALSE. Default
is FALSE.

retries Number of attempts to connect and execute the command. Default is 1.

Returns: A list with the fetch contents or a logical if write_to_disk = TRUE and keep_in_mem
= FALSE.

Examples:

\dontrun{
con$select_folder(name = "INBOX")
do a search and fetch the results (also saving to disk) using the pipe
out <- con$search_string(expr = "@k-state.edu", where = "CC") %>%
con$fetch_header()

or using a traditional approach
res <- con$search_string(expr = "@k-state.edu", where = "CC")
out <- con$fetch_header()

}

Method fetch_metadata(): Fetch message metadata

Usage:
ImapCon$fetch_metadata(
msg_id,
use_uid = FALSE,
attribute = NULL,
write_to_disk = FALSE,
keep_in_mem = TRUE,
mute = FALSE,
retries = 1

)

Arguments:

msg_id A numeric vector containing one or more message ids.
use_uid Default is FALSE. In this case, the operation will be performed using message sequence

numbers. A message sequence number is a message’s relative position to the oldest message
in a mail folder. It may change after deleting or moving messages. If a message is deleted,
sequence numbers are reordered to fill the gap. If TRUE, the command will be performed
using the "UID" or unique identifier. UIDs are always the same during the life cycle of a
message in a mail folder.

attribute An optional character vector specifying one or more attributes of the metadata
of a message to fetch. See metadata_options.

ImapCon 31

write_to_disk If TRUE, writes the fetched content of each message to a text file in a local
folder inside the working directory, also returning the results with invisible(). Default is
FALSE.

keep_in_mem If TRUE, keeps a copy of each fetch result while the operation is being per-
formed with write_to_disk = TRUE. Default is FALSE, and it can only be set TRUE when
write_to_disk = TRUE.

mute A logical. It provides a confirmation message if the command is successfully exe-
cuted. It is only effective when write_to_disk = TRUE and keep_in_mem = FALSE. Default
is FALSE.

retries Number of attempts to connect and execute the command. Default is 1.
peek If TRUE, it does not mark messages as "read" after fetching. Default is TRUE.
partial NULL or a character string with format "startchar.endchar" indicating the size (in char-

acters) of a message slice to fetch. Default is NULL, which will fetch the full specified
content.

Returns: A list with the fetch contents or a logical if write_to_disk = TRUE and keep_in_mem
= FALSE.

Examples:
\dontrun{
con$select_folder(name = "INBOX")
do a search and fetch the results using the pipe
out <- con$search_string(expr = "@k-state.edu", where = "FROM") %>%
con$fetch_metadata()

or using a traditional approach
res <- con$search_string(expr = "@k-state.edu", where = "FROM")
out <- con$fetch_metadata(msg = res)

}

Method fetch_text(): Fetch message text

Usage:
ImapCon$fetch_text(
msg_id,
use_uid = FALSE,
peek = TRUE,
partial = NULL,
write_to_disk = FALSE,
keep_in_mem = TRUE,
mute = FALSE,
base64_decode = FALSE,
retries = 1

)

Arguments:
msg_id A numeric vector containing one or more message ids.
use_uid Default is FALSE. In this case, the operation will be performed using message sequence

numbers. A message sequence number is a message’s relative position to the oldest message

32 ImapCon

in a mail folder. It may change after deleting or moving messages. If a message is deleted,
sequence numbers are reordered to fill the gap. If TRUE, the command will be performed
using the "UID" or unique identifier. UIDs are always the same during the life cycle of a
message in a mail folder.

peek If TRUE, it does not mark messages as "read" after fetching. Default is TRUE.
partial NULL or a character string with format "startchar.endchar" indicating the size (in char-

acters) of a message slice to fetch. Default is NULL, which will fetch the full specified
content.

write_to_disk If TRUE, writes the fetched content of each message to a text file in a local
folder inside the working directory, also returning the results with invisible(). Default is
FALSE.

keep_in_mem If TRUE, keeps a copy of each fetch result while the operation is being per-
formed with write_to_disk = TRUE. Default is FALSE, and it can only be set TRUE when
write_to_disk = TRUE.

mute A logical. It provides a confirmation message if the command is successfully exe-
cuted. It is only effective when write_to_disk = TRUE and keep_in_mem = FALSE. Default
is FALSE.

base64_decode If TRUE, tries to guess and decode the fetched text from base64 format to
character. Default is FALSE.

retries Number of attempts to connect and execute the command. Default is 1.

Returns: A list with the fetch contents or a logical if write_to_disk = TRUE and keep_in_mem
= FALSE.

Examples:

\dontrun{
con$select_folder(name = "INBOX")
do a search and partially fetch the results using the pipe
first 200 characters, writing to disk, silence results in the console
con$search_string(expr = "@k-state.edu", where = "FROM") %>%
con$fetch_text(partial = "0.200",

write_to_disk = TRUE,
keep_in_mem = FALSE)

or using a traditional approach
res <- con$search_string(expr = "@k-state.edu", where = "FROM")
con$fetch_text(msg = res,

partial = "0.200",
write_to_disk = TRUE,
keep_in_mem = FALSE)

}

Method copy_msg(): Copy message(s) between the selected folder and another one

Usage:
ImapCon$copy_msg(
msg_id,
use_uid = FALSE,

ImapCon 33

to_folder,
reselect = TRUE,
mute = FALSE,
retries = 1

)

Arguments:

msg_id A numeric vector containing one or more message ids.
use_uid Default is FALSE. In this case, the operation will be performed using message sequence

numbers. A message sequence number is a message’s relative position to the oldest message
in a mail folder. It may change after deleting or moving messages. If a message is deleted,
sequence numbers are reordered to fill the gap. If TRUE, the command will be performed
using the "UID" or unique identifier. UIDs are always the same during the life cycle of a
message in a mail folder.

to_folder A character string specifying the folder to which the messages will be copied.
reselect A logical. If TRUE, calls ImapCon$select_folder(name = to_folder) under the

hood before returning the output. Default is TRUE.
mute A logical. If TRUE, mutes the confirmation message when the command is successfully

executed. Default is FALSE.
retries Number of attempts to connect and execute the command. Default is 1.

Returns: An invisible numeric vector containing the message ids.

Examples:

\dontrun{
con$select_folder(name = "INBOX")
do a search and copy the results to another folder
con$search_string(expr = "@k-state.edu", where = "FROM") %>%
con$copy(to_folder = "Sent")

or using a traditional approach
res <- con$search_string(expr = "@k-state.edu", where = "FROM")
con$copy(msg = res, to_folder = "Sent")

}

Method move_msg(): Move message(s) between the selected folder and another one

Usage:
ImapCon$move_msg(
msg_id,
use_uid = FALSE,
to_folder,
reselect = TRUE,
mute = FALSE,
retries = 1

)

Arguments:

msg_id A numeric vector containing one or more message ids.

34 ImapCon

use_uid Default is FALSE. In this case, the operation will be performed using message sequence
numbers. A message sequence number is a message’s relative position to the oldest message
in a mail folder. It may change after deleting or moving messages. If a message is deleted,
sequence numbers are reordered to fill the gap. If TRUE, the command will be performed
using the "UID" or unique identifier. UIDs are always the same during the life cycle of a
message in a mail folder.

to_folder A character string specifying the folder to which the messages will be copied.
reselect A logical. If TRUE, calls ImapCon$select_folder(name = to_folder) under the

hood before returning the output. Default is TRUE.
mute A logical. If TRUE, mutes the confirmation message when the command is successfully

executed. Default is FALSE.
retries Number of attempts to connect and execute the command. Default is 1.

Returns: An invisible numeric vector containing the message ids.

Examples:
\dontrun{
con$select_folder(name = "INBOX")
do a search and copy the results to another folder
con$search_string(expr = "@k-state.edu", where = "FROM") %>%
con$move(to_folder = "Sent")

or using a traditional approach
res <- con$search_string(expr = "@k-state.edu", where = "FROM")
con$move(msg = res, to_folder = "Sent")

}

Method esearch_count(): Count the number of messages with a specific flag(s) in a folder
(depend on ESEARCH capability)

Usage:
ImapCon$esearch_count(flag, use_uid = FALSE, retries = 1)

Arguments:
flag A mandatory parameter that specifies one or more flags as a filter to the counting opera-

tion. Use ImapCon$list_flags() to list the flags in a selected mail folder.
use_uid Default is FALSE. In this case, results will be presented as message sequence numbers.

A message sequence number is a message’s relative position to the oldest message in a mail
folder. It may change after deleting or moving messages. If a message is deleted, sequence
numbers are reordered to fill the gap. If TRUE, the command will be performed using the
"UID" or unique identifier, and results are presented as such. UIDs are always the same
during the life cycle of a message in a mail folder.

retries Number of attempts to connect and execute the command. Default is 1.

Returns: A numeric vector of length 1 containing the number of messages in the folder that
meet the specified criteria.

Examples:
\dontrun{
con$select_folder(name = "INBOX")

ImapCon 35

count the number of messages marked as "Flagged" and "Answered"
con$esearch_count(flag = c("Flagged", "Answered"))
}

Method delete_msg(): Delete message(s) in the selected mail folder

Usage:
ImapCon$delete_msg(msg_id, use_uid = FALSE, mute = FALSE, retries = 1)

Arguments:

msg_id A numeric vector containing one or more message ids.
use_uid Default is FALSE. In this case, the operation will be performed using message sequence

numbers. A message sequence number is a message’s relative position to the oldest message
in a mail folder. It may change after deleting or moving messages. If a message is deleted,
sequence numbers are reordered to fill the gap. If TRUE, the command will be performed
using the "UID" or unique identifier. UIDs are always the same during the life cycle of a
message in a mail folder.

mute A logical. If TRUE, mutes the confirmation message when the command is successfully
executed. Default is FALSE.

retries Number of attempts to connect and execute the command. Default is 1.

Returns: An invisible numeric vector containing the message ids.

Examples:

\dontrun{
con$select_folder(name = "INBOX")
delete
con$delete_msg(flag = c("Flagged", "Answered"))
}

Method expunge(): Permanently removes all or specific messages marked as deleted from the
selected folder

Usage:
ImapCon$expunge(msg_uid = NULL, mute = FALSE, retries = 1)

Arguments:

msg_uid A numeric vector containing one or more messages UIDs. Only UIDs are allowed
in this operation (note the "u" in msg_uid).

mute A logical. If TRUE, mutes the confirmation message when the command is successfully
executed. Default is FALSE.

retries Number of attempts to connect and execute the command. Default is 1.

Returns: TRUE if the operation is successful.

Examples:

\dontrun{
con$select_folder(name = "INBOX")
count the number of messages marked as "Flagged" and "Answered"
con$esearch_count(flag = c("Flagged", "Answered"))
}

36 ImapCon

Method esearch_min_id(): Search the minimum message id in the selected mail folder (de-
pend on ESEARCH capability)

Usage:
ImapCon$esearch_min_id(flag, use_uid = FALSE, retries = 1)

Arguments:
flag A mandatory parameter that specifies one or more flags as a filter to the searching opera-

tion. Use ImapCon$list_flags() to list the flags in a selected mail folder.
use_uid Default is FALSE. In this case, results will be presented as message sequence numbers.

A message sequence number is a message’s relative position to the oldest message in a mail
folder. It may change after deleting or moving messages. If a message is deleted, sequence
numbers are reordered to fill the gap. If TRUE, the command will be performed using the
"UID" or unique identifier, and results are presented as such. UIDs are always the same
during the life cycle of a message in a mail folder.

retries Number of attempts to connect and execute the command. Default is 1.

Returns: A numeric vector of length 1 containing the minimum message id in the folder.

Examples:
\dontrun{
con$select_folder(name = "INBOX")
Search the minimum id of messages marked as "Answered"
con$esearch_min_id(flag = "Answered")
}

Method esearch_max_id(): Search the maximum message id in the selected mail folder (de-
pend on ESEARCH capability)

Usage:
ImapCon$esearch_max_id(flag, use_uid = FALSE, retries = 1)

Arguments:
flag A mandatory parameter that specifies one or more flags as a filter to the searching opera-

tion. Use ImapCon$list_flags() to list the flags in a selected mail folder.
use_uid Default is FALSE. In this case, results will be presented as message sequence numbers.

A message sequence number is a message’s relative position to the oldest message in a mail
folder. It may change after deleting or moving messages. If a message is deleted, sequence
numbers are reordered to fill the gap. If TRUE, the command will be performed using the
"UID" or unique identifier, and results are presented as such. UIDs are always the same
during the life cycle of a message in a mail folder.

retries Number of attempts to connect and execute the command. Default is 1.

Returns: A numeric vector of length 1 containing the maximum message id in the folder.

Examples:
\dontrun{
con$select_folder(name = "INBOX")
Search the minimum id of messages marked as "Seen"
con$esearch_max_id(flag = "Seen")
}

Method add_flags(): Add flags to one or more messages

ImapCon 37

Usage:
ImapCon$add_flags(
msg_id,
use_uid = FALSE,
flags_to_set,
mute = FALSE,
retries = 1

)

Arguments:

msg_id A numeric vector containing one or more message ids.
use_uid Default is FALSE. In this case, the operation will be performed using message sequence

numbers. A message sequence number is a message’s relative position to the oldest message
in a mail folder. It may change after deleting or moving messages. If a message is deleted,
sequence numbers are reordered to fill the gap. If TRUE, the command will be performed
using the "UID" or unique identifier. UIDs are always the same during the life cycle of a
message in a mail folder.

flags_to_set A character vector containing one or more flag names to add to the specified
message ids. If the flag to be set is a system flag, such as \SEEN, \ANSWERED, the name
should be preceded by two backslashes \.

mute A logical. If TRUE, mutes the confirmation message when the command is successfully
executed. Default is FALSE.

retries Number of attempts to connect and execute the command. Default is 1.

Returns: An invisible numeric vector containing the message ids.

Examples:

\dontrun{
con$select_folder(name = "INBOX")
Add the "\Seen" permanent flag to the messages received in the last hour
con$search_younger_than(seconds = 3600) %>% # depends on the WITHIN extension
con$add_flags(flags_to_set = "\\Seen")

}

Method replace_flags(): Replace the current flags of one or more messages

Usage:
ImapCon$replace_flags(
msg_id,
use_uid = FALSE,
flags_to_set,
mute = FALSE,
retries = 1

)

Arguments:

msg_id A numeric vector containing one or more message ids.
use_uid Default is FALSE. In this case, the operation will be performed using message sequence

numbers. A message sequence number is a message’s relative position to the oldest message
in a mail folder. It may change after deleting or moving messages. If a message is deleted,

38 ImapCon

sequence numbers are reordered to fill the gap. If TRUE, the command will be performed
using the "UID" or unique identifier. UIDs are always the same during the life cycle of a
message in a mail folder.

flags_to_set A character vector containing one or more flag names that will replace the
current ones. If the flag to be set is a system flag, such as \SEEN, \ANSWERED, the name
should be preceded by two backslashes \.

mute A logical. If TRUE, mutes the confirmation message when the command is successfully
executed. Default is FALSE.

retries Number of attempts to connect and execute the command. Default is 1.

Returns: An invisible numeric vector containing the message ids.

Examples:

\dontrun{
con$select_folder(name = "INBOX")
Replace the current flags of the messages in the search results for the
#.. flags "\UNSEEN" and "\Flagged"
con$search_since(date_char = "20-Aug-2020") %>%
con$replace_flags(flags_to_set = c("\\UNSEEN", "\\Flagged")

}

Method remove_flags(): Remove flag(s) of one or more messages

Usage:
ImapCon$remove_flags(
msg_id,
use_uid = FALSE,
flags_to_unset,
mute = FALSE,
retries = 1

)

Arguments:

msg_id A numeric vector containing one or more message ids.
use_uid Default is FALSE. In this case, the operation will be performed using message sequence

numbers. A message sequence number is a message’s relative position to the oldest message
in a mail folder. It may change after deleting or moving messages. If a message is deleted,
sequence numbers are reordered to fill the gap. If TRUE, the command will be performed
using the "UID" or unique identifier. UIDs are always the same during the life cycle of a
message in a mail folder.

flags_to_unset A character vector containing one or more flag names that will be unset
(removed). If the flag to be removed is a system flag, such as \SEEN, \ANSWERED, the name
should be preceded by two backslashes \.

mute A logical. If TRUE, mutes the confirmation message when the command is successfully
executed. Default is FALSE.

retries Number of attempts to connect and execute the command. Default is 1.

Returns: An invisible numeric vector containing the message ids.

Examples:

ImapCon 39

\dontrun{
con$select_folder(name = "INBOX")
Remove the the "\SEEN" flag from the messages in the search result
con$search_since(date_char = "20-Aug-2020") %>%
con$remove_flags(flags_to_unset = "\\UNSEEN")

}

Method get_attachments(): Extract attached file(s) from fetched message(s)

Usage:
ImapCon$get_attachments(
msg_list,
content_disposition = "both",
override = FALSE,
mute = FALSE,
as_is = FALSE

)

Arguments:
msg_list A list with the body or text content of the messages fetched with ImapCon$fetch_body()

or ImapCon$fetch_text().
content_disposition A string indicating which type of "Content-Disposition" attachments

should be retrieved. Default is "both", which retrieves regular attachments ("Content-
Disposition: attachment") and inline attachments ("Content-Disposition: inline").

override A logical. Provides a confirmation message if the command is successfully exe-
cuted. Default is FALSE.

mute A logical. If TRUE, mutes the confirmation message when the command is successfully
executed. Default is FALSE.

as_is If TRUE then write out attachments without base64 decoding. Default is FALSE.

Returns: TRUE if the operation is successful. The files are saved locally.

Examples:
\dontrun{
example 1
con$select_folder(name = "INBOX")
con$search_string(expr = "@gmail", where = "CC") %>%
con$fetch_text(write_to_disk = TRUE) %>% # saving the message's content as txt files
con$get_attachments()

example 2
res <- con$search_string(expr = "@gmail", where = "CC") %>%
out <- con$fetch_body(msg = res)
con$get_attachments(msg_list = out)
}

Method fetch_attachments_list(): Fetch attachments’ list

Usage:
ImapCon$fetch_attachments_list(msg_id, use_uid = FALSE, retries = 1)

Arguments:

40 ImapCon

msg_id A numeric vector containing one or more message ids.
use_uid Default is FALSE. In this case, the operation will be performed using message sequence

numbers. A message sequence number is a message’s relative position to the oldest message
in a mail folder. It may change after deleting or moving messages. If a message is deleted,
sequence numbers are reordered to fill the gap. If TRUE, the command will be performed
using the "UID" or unique identifier. UIDs are always the same during the life cycle of a
message in a mail folder.

retries Number of attempts to connect and execute the command. Default is 1.

Returns: A list with the fetch contents.

Examples:
\dontrun{
con$select_folder(name = "INBOX")
do a search and fetch the attachments' list of the messages
out < con$search_string(expr = "@k-state.edu", where = "FROM") %>%
con$fetch_attachments_list()

out

or using a traditional approach
res <- con$search_string(expr = "@k-state.edu", where = "FROM")
out <- con$fetch_attachments_list(msg = res)
out

}

Method fetch_attachments(): Fetch message attachments
Usage:
ImapCon$fetch_attachments(
msg_id,
use_uid = FALSE,
content_disposition = "both",
override = FALSE,
mute = FALSE,
retries = 1,
as_is = FALSE

)

Arguments:
msg_id A numeric vector containing one or more message ids.
use_uid Default is FALSE. In this case, the operation will be performed using message sequence

numbers. A message sequence number is a message’s relative position to the oldest message
in a mail folder. It may change after deleting or moving messages. If a message is deleted,
sequence numbers are reordered to fill the gap. If TRUE, the command will be performed
using the "UID" or unique identifier. UIDs are always the same during the life cycle of a
message in a mail folder.

content_disposition A string indicating which type of "Content-Disposition" attachments
should be retrieved. The options are both, attachment, and inline. Default is "both",
which retrieves regular attachments ("Content-Disposition: attachment") and inline attach-
ments ("Content-Disposition: inline").

ImapCon 41

override A logical. Provides a confirmation message if the command is successfully exe-
cuted. Default is FALSE.

mute A logical. If TRUE, mutes the confirmation message when the command is successfully
executed. Default is FALSE.

retries Number of attempts to connect and execute the command. Default is 1.
as_is If TRUE then write out attachments without base64 decoding. Default is FALSE.

Returns: A list with the fetch contents.

Examples:
\dontrun{
con$select_folder(name = "INBOX")
do a search and fetch the attachments' list of the messages
con$search_string(expr = "@k-state.edu", where = "FROM") %>%
con$fetch_attachments() # the attachments will be downloaded to disk

or using a traditional approach
res <- con$search_string(expr = "@k-state.edu", where = "FROM")
con$fetch_attachments(msg = res)

}

Method clone(): The objects of this class are cloneable with this method.

Usage:
ImapCon$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Note

ImapCon$new(): The configure_imap should be preferred instead of ImapCon$new().

ImapCon$search(): IMAP queries follows Polish notation, i.e. operators such as OR come before
arguments, e.g. "OR argument1 argument2". Therefore, the relational-operator-helper-functions in
this package should be used like the following examples: OR(before("17-Apr-2015"), string("FROM",
"John")). Even though there is no "AND" operator in IMAP, this package adds a helper function
AND to indicate multiples arguments that must be searched together, e.g. AND(since("01-Jul-2018"),
smaller_than(16000)).

ImapCon$sent_before(): Search operations that use the origination/RFC-2822 Header date tend
to be "slower" than those that use the internal date. Although the overhead is minimum, the dif-
ference is due to the fact that the internal date is kept on a database, while the origination date has
to be retrieved from inside the message. Therefore, the server needs to access each message when
executing this type of search. Despite this fact, both dates tend to be the same.

ImapCon$search_sent_since(): Search operations that use the origination/RFC-2822 Header
date tend to be "slower" than those that use the internal date. Although the overhead is minimum,
the difference is due to the fact that the internal date is kept on a database, while the origination date
has to be retrieved from inside the message. Therefore, the server needs to access each message
when executing this type of search. Despite this fact, both dates tend to be the same.

42 ImapCon

ImapCon$search_sent_on(): Search operations that use the origination/RFC-2822 Header date
tend to be "slower" than those that use the internal date. Although the overhead is minimum, the
difference is due to the fact that the internal date is kept on a database, while the origination date
has to be retrieved from inside the message. Therefore, the server needs to access each message
when executing this type of search. Despite this fact, both dates tend to be the same.

ImapCon$search_sent_period(): Search operations that use the origination/RFC-2822 Header
date tend to be "slower" than those that use the internal date. Although the overhead is minimum,
the difference is due to the fact that the internal date is kept on a database, while the origination date
has to be retrieved from inside the message. Therefore, the server needs to access each message
when executing this type of search. Despite this fact, both dates tend to be the same.

ImapCon$search_older_than(): To be able to use this functionality, the server must support the
WITHIN capability. You can check it by running ImapCon$list_server_capabilities().

ImapCon$search_older_than(): To be able to use this functionality, the server must support the
WITHIN capability. You can check it by running ImapCon$list_server_capabilities().

ImapCon$search_string(): Using where = "TEXT", may produce unexpected results since it will
perform the search on raw data, i.e. the searched expression may be truncated by special formating
characters such as \r\n for example. It is recommended to perform this type of search using where
= "BODY", instead of "TEXT" (Heinlein, P. and Hartleben, P. (2008)).

ImapCon$esearch_count(): This operation depends on the ESEARCH extension.

ImapCon$esearch_min_id(): This operation depends on the ESEARCH extension.

ImapCon$esearch_max_id(): This operation depends on the ESEARCH extension.

ImapCon$add_flags(): Unlike the search operations, the add/replace/delete flags operations de-
mand system flag names to be preceded by two backslashes "\\".

ImapCon$add_flags(): add_flags, remove_flags, and replace_flags accept not only flags but
also keywords (any word not beginning with two backslashes) which are custom flags defined by
the user.

ImapCon$replace_flags(): Unlike the search operations, the add/replace/delete flags operations
demand system flag names to be preceded by two backslashes "\\".

ImapCon$replace_flags(): add_flags, remove_flags, and replace_flags accept not only
flags but also keywords (any word not beginning with two backslashes) which are custom flags
defined by the user.

ImapCon$remove_flags(): Unlike the search operations, the add/replace/delete flags operations
demand system flag names to be preceded by two backslashes "\\".

ImapCon$remove_flags(): add_flags, remove_flags, and replace_flags accept not only flags
but also keywords (any word not beginning with two backslashes) which are custom flags defined
by the user.

ImapCon$get_attachments(): This method is to be used after the body or the text part of one
or more messages were fetched. This makes sense if the user is interested in keeping the mes-
sage content (body or text) besides downloading the message attachments. Nonetheless, this is
not the recommended approach if the user is only interested in downloading the files as the pre-
vious fetching operation will probably be costly. In this last case, the recommendation is to use
ImapCon$fetch_attachments() as it will only fetch the attachment part.

ImapCon$get_attachments(): All attachments will be stored in a folder labeled with the message
id inside the working directory > servername > foldername. This function currently handles

ImapCon 43

only attachments encoded as base64 text. It tries to guess all file extensions while decoding the
text, but it may not be possible to do so in some circumstances. If it happens, you can try to change
the file extension directly by renaming the file.

ImapCon$get_attachments(): The "Content-Disposition" header specifies if the multipart elec-
tronic messages will be presented as a main document with a list of separate attachments ("Content-
Disposition: attachment") or as a single document with the various parts displayed inline. The first
requires positive action on the part of the recipient (downloading the file, for example) whereas
inline components are displayed automatically when the message is viewed (Troost, R., Dorner, S.,
and K. Moore, Ed. (1997)). You can choose to download both, or only one type of attachment,
using the argument content_disposition.

ImapCon$fetch_attachments(): All attachments will be stored in a folder labeled with the mes-
sage id inside the working directory > servername > foldername. This function currently han-
dles only attachments encoded as base64 text. It tries to guess all file extensions while decoding
the text, but it may not be possible to do so in some circumstances. If it happens, you can try to
change the file extension directly by renaming the file.

ImapCon$fetch_attachments(): The "Content-Disposition" header specifies if the multipart elec-
tronic messages will be presented as a main document with a list of separate attachments ("Content-
Disposition: attachment") or as a single document with the various parts displayed inline. The first
requires positive action on the part of the recipient (downloading the file, for example) whereas
inline components are displayed automatically when the message is viewed (Troost, R., Dorner, S.,
and K. Moore, Ed. (1997)). You can choose to download both, or only one type of attachment,
using the argument content_disposition.

References

ImapCon$search_string(): Heinlein, P. and Hartleben, P. (2008). The Book of IMAP: Building
a Mail Server with Courier and Cyrus. No Starch Press. ISBN 978-1-59327-177-0.

ImapCon$get_attachments(): Troost, R., Dorner, S., and K. Moore (1997), Communicating Pre-
sentation Information in Internet Messages: The Content-Disposition Header Field, RFC 2183,
August 1997, https://www.rfc-editor.org/rfc/rfc2183.

ImapCon$fetch_attachments(): Troost, R., Dorner, S., and K. Moore (1997), Communicating
Presentation Information in Internet Messages: The Content-Disposition Header Field, RFC 2183,
DOI 10.17487/RFC2183, August 1997, https://www.rfc-editor.org/rfc/rfc2183.

See Also

Other custom search: AND(), OR(), before(), flag(), larger_than(), older_than(), on(),
sent_before(), sent_on(), sent_since(), since(), smaller_than(), string(), younger_than()

Other attachments: list_attachments()

Examples

Not run:
w/ Plain authentication
con <- configure_imap(

url="imaps://outlook.office365.com",
username="user@agency.gov.br",
password=rstudioapi::askForPassword(),

44 ImapCon

verbose = TRUE)

OR
con <- ImapCon$new(

url="imaps://outlook.office365.com",
username="user@agency.gov.br",
password=rstudioapi::askForPassword(),
verbose = TRUE)

w/ OAuth2.0 authentication
con <- configure_imap(

url="imaps://outlook.office365.com",
username="user@agency.gov.br",
verbose = TRUE,
xoauth2_bearer = "XX.Ya9...")

OR
con <- ImapCon$new(

url="imaps://outlook.office365.com",
username="user@agency.gov.br",
verbose = TRUE,
xoauth2_bearer = "XX.Ya9...")

End(Not run)

--
Method `ImapCon$list_server_capabilities`
--

Not run:
cap <- con$list_server_capabilities()
cap

End(Not run)

--
Method `ImapCon$list_mail_folders`
--

Not run:
folders <- con$list_mail_folders()
folders

End(Not run)

--
Method `ImapCon$select_folder`
--

Not run:

ImapCon 45

con$select_mail_folder(name = "INBOX")

End(Not run)

--
Method `ImapCon$examine_folder`
--

Not run:
con$select_folder(name = "INBOX")
con$examine_folder()

or directly:
con$examine_folder("Sent")

End(Not run)

--
Method `ImapCon$create_folder`
--

Not run:
con$create_folder(name = "New Folder Name")

End(Not run)

--
Method `ImapCon$rename_folder`
--

Not run:
con$select_folder(name = "Folder A")
con$rename_folder(new_name = "Folder B")
or directly:
con$rename_folder(name = "Folder A", new_name = "Folder B")

End(Not run)

--
Method `ImapCon$list_flags`
--

Not run:
con$select_folder(name = "INBOX")
con$list_flags()

End(Not run)

--
Method `ImapCon$search`
--

Not run:

46 ImapCon

con$select_folder(name = "INBOX")
ex1
con$search(OR(before(date_char = "17-Apr-2015"),

string(expr = "John", where = "FROM")))

ex2
con$search(AND(smaller_than(size = "512000"),

string(expr = "John", where = "FROM"),
string(expr = "@ksu.edu", where = "CC")))

End(Not run)

--
Method `ImapCon$search_larger_than`
--

Not run:
search for messages with size larger than 512Kb
con$search_larger_than(size = 512000))

End(Not run)

--
Method `ImapCon$search_smaller_than`
--

Not run:
con$select_folder(name = "INBOX")
search for messages with size smaller than 512Kb
con$search_smaller_than(size = 512000))

End(Not run)

--
Method `ImapCon$search_before`
--

Not run:
con$select_folder(name = "INBOX")
search for messages with date before "02-Jan-2020", presenting the
.. results as unique identifiers (UID)
con$search_before(date = "02-Jan-2020", use_uid = TRUE)

End(Not run)

--
Method `ImapCon$search_since`
--

Not run:
con$select_folder(name = "INBOX")
search for messages with date since "02-Jan-2020", presenting the
.. results as unique identifiers (UID)

ImapCon 47

con$search_since(date = "02-Jan-2020", use_uid = TRUE)

End(Not run)

--
Method `ImapCon$search_on`
--

Not run:
con$select_folder(name = "INBOX")
search for messages received on date "02-Jan-2020", presenting the
#... results as unique identifiers (UID)
con$search_on(date = "02-Jan-2020", use_uid = TRUE)

End(Not run)

--
Method `ImapCon$search_period`
--

Not run:
con$select_folder(name = "INBOX")
search for all messages in the mail folder, EXCEPT (negate = TRUE) by
#... those received between the dates "02-Jan-2020" and "22-Mar-2020"
con$search_period(since_date_char = "02-Jan-2020",

before_date_char = "22-Mar-2020",
negate = TRUE))

End(Not run)

--
Method `ImapCon$search_sent_before`
--

Not run:
search for messages with date before "02-Jan-2020", presenting the
.. results as unique identifiers (UID)
con$search_sent_before(date = "02-Jan-2020", use_uid = TRUE)

End(Not run)

--
Method `ImapCon$search_sent_since`
--

Not run:
search for messages with date before "02-Jan-2020", presenting the
.. results as unique identifiers (UID)
con$search_sent_since(date = "02-Jan-2020", use_uid = TRUE)

End(Not run)

--

48 ImapCon

Method `ImapCon$search_sent_on`
--

Not run:
con$select_folder(name = "INBOX")
search for messages received on date "02-Jan-2020", presenting the
#... results as unique identifiers (UID)
con$search_sent_on(date = "02-Jan-2020", use_uid = TRUE)

End(Not run)

--
Method `ImapCon$search_sent_period`
--

Not run:
con$select_folder(name = "INBOX")
search for all messages in the mail folder, EXCEPT (negate = TRUE) by
#... those received between the dates "02-Jan-2020" and "22-Mar-2020"
con$search_sent_period(since_date_char = "02-Jan-2020",

before_date_char = "22-Mar-2020",
negate = TRUE))

End(Not run)

--
Method `ImapCon$search_flag`
--

Not run:
con$select_folder(name = "INBOX")
search for all messages in the mail folder that are marked as "SEEN" AND
#.. "ANSWERED"
con$search_flag(name = c("SEEN", "ANSWERED"))

End(Not run)

--
Method `ImapCon$search_older_than`
--

Not run:
con$select_folder(name = "INBOX")
search for all messages received in the last hour (not older than 3600 seconds)
con$search_older_than(seconds = 3600, negate = TRUE)

End(Not run)

--
Method `ImapCon$search_younger_than`
--

Not run:

ImapCon 49

con$select_folder(name = "INBOX")
search for all messages received in the last hour (younger than 3600 seconds)
con$search_younger_than(seconds = 3600)

End(Not run)

--
Method `ImapCon$search_string`
--

Not run:
con$select_folder(name = "INBOX")
search for all messages received in the last hour (younger than 3600 seconds)
con$search_string(expr = "@k-state.edu", where = "FROM")

End(Not run)

--
Method `ImapCon$fetch_body`
--

Not run:
con$select_folder(name = "INBOX")
do a search and fetch the results (saving to disk) using the pipe
con$search_string(expr = "@k-state.edu", where = "FROM") %>%

con$fetch_body(write_to_disk = TRUE, keep_in_mem = FALSE)

or using a traditional approach
res <- con$search_string(expr = "@k-state.edu", where = "FROM")

con$fetch_body(msg = res, write_to_disk = TRUE, keep_in_mem = FALSE)

End(Not run)

--
Method `ImapCon$fetch_header`
--

Not run:
con$select_folder(name = "INBOX")
do a search and fetch the results (also saving to disk) using the pipe
out <- con$search_string(expr = "@k-state.edu", where = "CC") %>%

con$fetch_header()

or using a traditional approach
res <- con$search_string(expr = "@k-state.edu", where = "CC")
out <- con$fetch_header()

End(Not run)

--

50 ImapCon

Method `ImapCon$fetch_metadata`
--

Not run:
con$select_folder(name = "INBOX")
do a search and fetch the results using the pipe
out <- con$search_string(expr = "@k-state.edu", where = "FROM") %>%

con$fetch_metadata()

or using a traditional approach
res <- con$search_string(expr = "@k-state.edu", where = "FROM")
out <- con$fetch_metadata(msg = res)

End(Not run)

--
Method `ImapCon$fetch_text`
--

Not run:
con$select_folder(name = "INBOX")
do a search and partially fetch the results using the pipe
first 200 characters, writing to disk, silence results in the console
con$search_string(expr = "@k-state.edu", where = "FROM") %>%

con$fetch_text(partial = "0.200",
write_to_disk = TRUE,
keep_in_mem = FALSE)

or using a traditional approach
res <- con$search_string(expr = "@k-state.edu", where = "FROM")
con$fetch_text(msg = res,

partial = "0.200",
write_to_disk = TRUE,
keep_in_mem = FALSE)

End(Not run)

--
Method `ImapCon$copy_msg`
--

Not run:
con$select_folder(name = "INBOX")
do a search and copy the results to another folder
con$search_string(expr = "@k-state.edu", where = "FROM") %>%

con$copy(to_folder = "Sent")

or using a traditional approach
res <- con$search_string(expr = "@k-state.edu", where = "FROM")
con$copy(msg = res, to_folder = "Sent")

ImapCon 51

End(Not run)

--
Method `ImapCon$move_msg`
--

Not run:
con$select_folder(name = "INBOX")
do a search and copy the results to another folder
con$search_string(expr = "@k-state.edu", where = "FROM") %>%

con$move(to_folder = "Sent")

or using a traditional approach
res <- con$search_string(expr = "@k-state.edu", where = "FROM")
con$move(msg = res, to_folder = "Sent")

End(Not run)

--
Method `ImapCon$esearch_count`
--

Not run:
con$select_folder(name = "INBOX")
count the number of messages marked as "Flagged" and "Answered"
con$esearch_count(flag = c("Flagged", "Answered"))

End(Not run)

--
Method `ImapCon$delete_msg`
--

Not run:
con$select_folder(name = "INBOX")
delete
con$delete_msg(flag = c("Flagged", "Answered"))

End(Not run)

--
Method `ImapCon$expunge`
--

Not run:
con$select_folder(name = "INBOX")
count the number of messages marked as "Flagged" and "Answered"
con$esearch_count(flag = c("Flagged", "Answered"))

End(Not run)

52 ImapCon

--
Method `ImapCon$esearch_min_id`
--

Not run:
con$select_folder(name = "INBOX")
Search the minimum id of messages marked as "Answered"
con$esearch_min_id(flag = "Answered")

End(Not run)

--
Method `ImapCon$esearch_max_id`
--

Not run:
con$select_folder(name = "INBOX")
Search the minimum id of messages marked as "Seen"
con$esearch_max_id(flag = "Seen")

End(Not run)

--
Method `ImapCon$add_flags`
--

Not run:
con$select_folder(name = "INBOX")
Add the "\Seen" permanent flag to the messages received in the last hour
con$search_younger_than(seconds = 3600) %>% # depends on the WITHIN extension

con$add_flags(flags_to_set = "\\Seen")

End(Not run)

--
Method `ImapCon$replace_flags`
--

Not run:
con$select_folder(name = "INBOX")
Replace the current flags of the messages in the search results for the
#.. flags "\UNSEEN" and "\Flagged"
con$search_since(date_char = "20-Aug-2020") %>%

con$replace_flags(flags_to_set = c("\\UNSEEN", "\\Flagged")

End(Not run)

--
Method `ImapCon$remove_flags`
--

Not run:
con$select_folder(name = "INBOX")

ImapCon 53

Remove the the "\SEEN" flag from the messages in the search result
con$search_since(date_char = "20-Aug-2020") %>%

con$remove_flags(flags_to_unset = "\\UNSEEN")

End(Not run)

--
Method `ImapCon$get_attachments`
--

Not run:
example 1
con$select_folder(name = "INBOX")
con$search_string(expr = "@gmail", where = "CC") %>%

con$fetch_text(write_to_disk = TRUE) %>% # saving the message's content as txt files
con$get_attachments()

example 2
res <- con$search_string(expr = "@gmail", where = "CC") %>%
out <- con$fetch_body(msg = res)
con$get_attachments(msg_list = out)

End(Not run)

--
Method `ImapCon$fetch_attachments_list`
--

Not run:
con$select_folder(name = "INBOX")
do a search and fetch the attachments' list of the messages
out < con$search_string(expr = "@k-state.edu", where = "FROM") %>%

con$fetch_attachments_list()
out

or using a traditional approach
res <- con$search_string(expr = "@k-state.edu", where = "FROM")
out <- con$fetch_attachments_list(msg = res)
out

End(Not run)

--
Method `ImapCon$fetch_attachments`
--

Not run:
con$select_folder(name = "INBOX")
do a search and fetch the attachments' list of the messages
con$search_string(expr = "@k-state.edu", where = "FROM") %>%

con$fetch_attachments() # the attachments will be downloaded to disk

54 larger_than

or using a traditional approach
res <- con$search_string(expr = "@k-state.edu", where = "FROM")
con$fetch_attachments(msg = res)

End(Not run)

larger_than Criterion constructor function to be combined in a custom search
statement

Description

Criterion constructor function to be combined in a custom search statement

Usage

larger_than(size, negate = FALSE)

Arguments

size An integer specifying the number of seconds to be used as search criterion.

negate If TRUE, negates the search and seeks for "NOT SEARCH CRITERIA". Default
is FALSE.

See Also

Other custom search: AND(), ImapCon, OR(), before(), flag(), older_than(), on(), sent_before(),
sent_on(), sent_since(), since(), smaller_than(), string(), younger_than()

Examples

Not run:
select folder & search
con$select_folder(name = "INBOX")
search for messages containing the string "XYZ@k-state.edu" in the
"FROM" field OR those that are LARGER than 512KB.
res <- con$search(request = OR(string(expr = "XYZ@k-state.edu",

where = "FROM"),
larger_than(size = 512000)))

End(Not run)

list_attachments 55

list_attachments List attachments and content-disposition types

Description

List attachments and content-disposition types

Usage

list_attachments(msg_list)

Arguments

msg_list A list containing the messages (body or text) fetched from the server.

Value

A list of data.frames containing the filenames and its Content-Disposition types for each
fetched message.

Note

Please, note that this is an independent function and not an R6 method that depends on the connec-
tion object. Therefore, it should be called alone without the ImapCon object.

See Also

Other attachments: ImapCon

Examples

Not run:
con$select_folder(name = "INBOX")
do a search followed by a fetch operation, then extract the attachments' list
out <- con$search_string(expr = "@k-state.edu", where = "FROM") %>%

con$fetch_body()
att_list <- list_attachments(msg_list = out)

or
att_list <- con$search_string(expr = "@k-state.edu", where = "FROM") %>%

con$fetch_body() %>%
list_attachments()

End(Not run)

56 older_than

metadata_options Message Metadata Options

Description

List Metadata fields used in messages.

Usage

metadata_options()

Value

A vector containing message metadata fields.

Note

This function lists message metadata used by IMAP servers, according to the RFC 2060 (Crispin,
1996).

References

Crispin, M., "Internet Message Access Protocol - Version 4rev1", RFC 2060, doi:10.17487/RFC2060,
December 1996, https://www.rfc-editor.org/info/rfc2060.

Examples

Not run:

library(mRpostman)
metadata_options()

End(Not run)

older_than Criterion constructor function to be combined in a custom search
statement

Description

Criterion constructor function to be combined in a custom search statement

Usage

older_than(seconds, negate = FALSE)

https://doi.org/10.17487/RFC2060
https://www.rfc-editor.org/info/rfc2060

on 57

Arguments

seconds An integer specifying the number of seconds to be used as the search criterion.

negate If TRUE, negates the search and seeks for "NOT SEARCH CRITERIA". Default
is FALSE.

Note

To be able to use this functionality, the server must support the WITHIN capability.

See Also

Other custom search: AND(), ImapCon, OR(), before(), flag(), larger_than(), on(), sent_before(),
sent_on(), sent_since(), since(), smaller_than(), string(), younger_than()

Examples

Not run:
select folder & search
con$select_folder(name = "INBOX")
search for messages containing the string "XYZ@k-state.edu" in the
"FROM" field AND those that are OLDER than 3600 seconds (1 hour).
res <- con$search(request = AND(string(expr = "XYZ@k-state.edu",

where = "FROM"),
older_than(seconds = 3600)))

End(Not run)

on Criterion constructor function to be combined in a custom search
statement

Description

Criterion constructor function to be combined in a custom search statement

Usage

on(date_char, negate = FALSE)

Arguments

date_char A character string with format "DD-Mon-YYYY", e.g. "01-Apr-2019". We
opt not to use Date or POSIX* like objects, since IMAP servers use this unusual
date format.

negate If TRUE, negates the search and seeks for "NOT SEARCH CRITERIA". Default
is FALSE.

58 OR

Value

A search string to be used as a request parameter in ImapCon$search() function.

See Also

Other custom search: AND(), ImapCon, OR(), before(), flag(), larger_than(), older_than(),
sent_before(), sent_on(), sent_since(), since(), smaller_than(), string(), younger_than()

Examples

Not run:
select folder & search
con$select_folder(name = "INBOX")
search for messages SINCE "17-Apr-2019" AND SMALLER than 512KB.
res <- con$search(request = OR(on(date_char = "30-Jun-2019"),

on(date_char = "22-Mar-2018")))
search for messages received ON "30-Jun-2019" OR ON "22-Mar-2018".

End(Not run)

OR Relational-operator-function to construct a custom search statement

Description

Relational-operator-function to construct a custom search statement

Usage

OR(..., negate = FALSE)

Arguments

... a combination of criteria constructor functions with its arguments.

negate If TRUE, negates the search and seeks for "NOT search_criterion". Default is
FALSE.

Value

A search string to be used as a request parameter in ImapCon$search() function.

See Also

Other custom search: AND(), ImapCon, before(), flag(), larger_than(), older_than(), on(),
sent_before(), sent_on(), sent_since(), since(), smaller_than(), string(), younger_than()

sent_before 59

Examples

Not run:
select folder & search
con$select_folder(name = "INBOX")
search for messages SINCE "30-Ago-2019" OR SMALLER than 512KB.
res <- con$search(request = OR(sent_since(date_char = "30-Ago-2019"),

smaller_than(size = 512000)))

End(Not run)

sent_before Criterion constructor function to be combined in a custom search
statement

Description

Criterion constructor function to be combined in a custom search statement

Usage

sent_before(date_char, negate = FALSE)

Arguments

date_char A character string with format "DD-Mon-YYYY", e.g. "01-Apr-2019". We
opt not to use Date or POSIX* like objects, since IMAP servers use this unusual
date format.

negate If TRUE, negates the search and seeks for "NOT SEARCH CRITERIA". Default
is FALSE.

Value

A search string to be used as a request parameter in ImapCon$search() function.

See Also

Other custom search: AND(), ImapCon, OR(), before(), flag(), larger_than(), older_than(),
on(), sent_on(), sent_since(), since(), smaller_than(), string(), younger_than()

Examples

Not run:
select folder & search
con$select_folder(name = "INBOX")
search for messages SINCE "30-Ago-2019" AND SMALLER than 512KB.
res <- con$search(request = AND(sent_since(date_char = "30-Ago-2019"),

smaller_than(size = 512000)))

End(Not run)

60 sent_on

sent_on Criterion constructor function to be combined in a custom search
statement

Description

Criterion constructor function to be combined in a custom search statement

Usage

sent_on(date_char, negate = FALSE)

Arguments

date_char A character string with format "DD-Mon-YYYY", e.g. "01-Apr-2019". We
opt not to use Date or POSIX* like objects, since IMAP servers use this unusual
date format.

negate If TRUE, negates the search and seeks for "NOT SEARCH CRITERIA". Default
is FALSE.

Value

A search string to be used as a request parameter in ImapCon$search() function.

See Also

Other custom search: AND(), ImapCon, OR(), before(), flag(), larger_than(), older_than(),
on(), sent_before(), sent_since(), since(), smaller_than(), string(), younger_than()

Examples

Not run:
select folder & search
con$select_folder(name = "INBOX")
search for messages SINCE "30-Ago-2019" OR LARGER than 512KB.
res <- con$search(request = OR(sent_since(date_char = "30-Jun-2020"),

larger_than(size = 512000)))

End(Not run)

sent_since 61

sent_since Criterion constructor function to be combined in a custom search
statement

Description

Criterion constructor function to be combined in a custom search statement

Usage

sent_since(date_char, negate = FALSE)

Arguments

date_char A character string with format "DD-Mon-YYYY", e.g. "01-Apr-2019". We
opt not to use Date or POSIX* like objects, since IMAP servers use this unusual
date format.

negate If TRUE, negates the search and seeks for "NOT SEARCH CRITERIA". Default
is FALSE.

Value

A search string to be used as a request parameter in ImapCon$search() function.

See Also

Other custom search: AND(), ImapCon, OR(), before(), flag(), larger_than(), older_than(),
on(), sent_before(), sent_on(), since(), smaller_than(), string(), younger_than()

Examples

Not run:
select folder & search
con$select_folder(name = "INBOX")
search for messages SENT SINCE "22-Mar-2020" OR containing the STRING
"congratulations" in the subject.
res <- con$search(request = AND(sent_since(date_char = "22-Mar-2020"),

string(expr = "congratulations",
where = "SUBJECT")))

End(Not run)

62 since

since Criterion constructor function to be combined in a custom search
statement

Description

Criterion constructor function to be combined in a custom search statement

Usage

since(date_char, negate = FALSE)

Arguments

date_char A character string with format "DD-Mon-YYYY", e.g. "01-Apr-2019". We
opt not to use Date or POSIX* like objects, since IMAP servers use this unusual
date format.

negate If TRUE, negates the search and seeks for "NOT SEARCH CRITERIA". Default
is FALSE.

Value

A search string to be used as a request parameter in ImapCon$search() function.

See Also

Other custom search: AND(), ImapCon, OR(), before(), flag(), larger_than(), older_than(),
on(), sent_before(), sent_on(), sent_since(), smaller_than(), string(), younger_than()

Examples

Not run:
select folder & search
con$select_folder(name = "INBOX")
search for messages SINCE "17-Apr-2019" AND SMALLER than 512KB.
res <- con$search(request = AND(since(date_char = "17-Apr-2019"),

smaller_than(size = 512000)))

End(Not run)

smaller_than 63

smaller_than Criterion constructor function to be combined in a custom search
statement

Description

Criterion constructor function to be combined in a custom search statement

Usage

smaller_than(size, negate = FALSE)

Arguments

size An integer specifying the number of seconds to be used as search criterion.

negate If TRUE, negates the search and seeks for "NOT SEARCH CRITERIA". Default
is FALSE.

See Also

Other custom search: AND(), ImapCon, OR(), before(), flag(), larger_than(), older_than(),
on(), sent_before(), sent_on(), sent_since(), since(), string(), younger_than()

Examples

Not run:
select folder & search
con$select_folder(name = "INBOX")
search for messages containing the string "XYZ@k-state.edu" in the
"FROM" field OR those that are SMALLER than 512KB.
res <- con$search(request = OR(string(expr = "XYZ@k-state.edu",

where = "FROM"),
smaller_than(size = 512000)))

End(Not run)

string Criterion constructor function to be combined in a custom search
statement

Description

Criterion constructor function to be combined in a custom search statement

64 younger_than

Usage

string(expr, where, negate = FALSE)

Arguments

expr A character string specifying the word or expression to search for in messages.

where A mandatory character string specifying in which message’s Section or Header
Field to search for the provided string.

negate If TRUE, negates the search and seeks for "NOT SEARCH CRITERIA". Default
is FALSE.

See Also

Other custom search: AND(), ImapCon, OR(), before(), flag(), larger_than(), older_than(),
on(), sent_before(), sent_on(), sent_since(), since(), smaller_than(), younger_than()

Examples

Not run:
select folder & search
con$select_folder(name = "INBOX")
search for messages containing the string "XYZ@k-state.edu" in the
"FROM" AND the string "@gmail.com" in the "CC" field.
res <- con$search(request = AND(string(expr = "XYZ@k-state.edu",

where = "FROM"),
string(expr = "@gmail.com",

where = "CC")))

End(Not run)

younger_than Criterion constructor function to be combined in a custom search
statement

Description

Criterion constructor function to be combined in a custom search statement

Usage

younger_than(seconds, negate = FALSE)

Arguments

seconds An integer specifying the number of seconds to be used as the search criterion.

negate If TRUE, negates the search and seeks for "NOT SEARCH CRITERIA". Default
is FALSE.

younger_than 65

Note

To be able to use this functionality, the server must support the WITHIN capability.

See Also

Other custom search: AND(), ImapCon, OR(), before(), flag(), larger_than(), older_than(),
on(), sent_before(), sent_on(), sent_since(), since(), smaller_than(), string()

Examples

Not run:
select folder & search
con$select_folder(name = "INBOX")
search for messages containing the string "XYZ@k-state.edu" in the
"FROM" field AND those that are YOUNGER than 3600 seconds (1 hour).
res <- con$search(request = AND(string(expr = "XYZ@k-state.edu",

where = "FROM"),
younger_than(seconds = 3600)))

End(Not run)

Index

∗ attachments
ImapCon, 9
list_attachments, 55

∗ complementary operations
ImapCon, 9

∗ custom search
AND, 3
before, 4
flag, 8
ImapCon, 9
larger_than, 54
older_than, 56
on, 57
OR, 58
sent_before, 59
sent_on, 60
sent_since, 61
since, 62
smaller_than, 63
string, 63
younger_than, 64

∗ fetch
ImapCon, 9

∗ options
metadata_options, 56

∗ search by date
ImapCon, 9

∗ search by flag
ImapCon, 9

∗ search by size
ImapCon, 9

∗ search within
ImapCon, 9

AND, 3, 4, 9, 15, 41, 43, 54, 57–65

before, 3, 4, 9, 15, 43, 54, 57–65

clean_msg_text, 5
configure_imap, 6, 41

decode_mime_header, 7

flag, 3, 4, 8, 15, 43, 54, 57–65

ImapCon, 3, 4, 9, 9, 54, 55, 57–65

larger_than, 3, 4, 9, 15, 43, 54, 57–65
list_attachments, 43, 55

metadata_options, 30, 56
mRpostman (mRpostman-package), 2
mRpostman-package, 2

older_than, 3, 4, 9, 43, 54, 56, 58–65
on, 3, 4, 9, 15, 43, 54, 57, 57, 58–65
OR, 3, 4, 9, 15, 43, 54, 57, 58, 58, 59–65

sent_before, 3, 4, 9, 15, 43, 54, 57, 58, 59,
60–65

sent_on, 3, 4, 9, 15, 43, 54, 57–59, 60, 61–65
sent_since, 3, 4, 9, 15, 43, 54, 57–60, 61,

62–65
since, 3, 4, 9, 15, 43, 54, 57–61, 62, 63–65
smaller_than, 3, 4, 9, 15, 43, 54, 57–62, 63,

64, 65
string, 3, 4, 9, 15, 43, 54, 57–63, 63, 65

younger_than, 3, 4, 9, 15, 43, 54, 57–64, 64

66

	mRpostman-package
	AND
	before
	clean_msg_text
	configure_imap
	decode_mime_header
	flag
	ImapCon
	larger_than
	list_attachments
	metadata_options
	older_than
	on
	OR
	sent_before
	sent_on
	sent_since
	since
	smaller_than
	string
	younger_than
	Index

